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Abstract

This paper studies the conduct of monetary policy in a model with an endogenous

degree of expectations anchoring. I use an estimated New Keynesian model with

endogenous forecast switching to replicate the time-varying excess sensitivity of long-

term inflation expectations to inflation surprises as well as the resulting movements

of long-term inflation expectations. In this model, de-anchoring leads to increased

inflation volatility and can cause deflationary spirals when the zero lower bound (ZLB)

is binding. This implies an optimal inflation response that is significantly higher when

expectations are endogenously anchored compared to rational expectations. Price Level

Targeting, on the other hand, can increase the risk of deflationary spirals near the ZLB.
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1. Introduction

The anchoring of inflation expectations is a central tenet of monetary policy making. Most

central banks in advanced economies try to anchor private long-term inflation expectations

to their inflation target. Anchored long-term expectations reflect the trust in the central

bank’s commitment to offset inflationary shocks and to bring inflation eventually back to

target. However, when households lose trust in the central bank’s commitment, they start

to believe that temporary inflation movements will not be offset by the central bank. This

may cause long-term expectations to eventually de-anchor from the central bank’s target.1

The resulting pass-through of short-term conditions to long-term expectations can lead to

self-reinforcing inflation movements as in the 1970s (see Figure 1). 2. More recently, fears

of expectations de-anchoring have resurfaced as consequence of both the low inflation rates

of the 2010s as well as the high inflation rates of in the aftermath of the Covid-19 pandemic

(Reis, 2021) and the war in Ukraine.

Therefore, this paper studies the conduct of monetary policy when the anchoring of

expectations is determined endogenously. I show that de-anchoring can occur if households

do not believe in the central bank’s ability to stabilise inflation even in the face of transitory

shocks and a central bank that is committed to stabilise inflation.3 I take the model to

the data, providing a general equilibrium model with endogenous de-anchoring that is fully

estimated using likelihood methods and expectations data. The estimated model implies

a substantial degree of expectations de-anchoring beginning in 2021. Using this model, I

evaluate two policy frameworks, Inflation Targeting (IT) and Price Level Targeting (PLT),

in terms of their stability properties and their ability to stabilise inflation.

This delivers three key policy recommendations: First, expectations de-anchoring at the

Zero Lower Bound (ZLB) can lead to deflationary spirals, whereas expectations de-anchoring

away from the ZLB does not lead to inflationary spirals. This implies an asymmetric welfare

1There is no widely agreed-upon definition of expectations de-anchoring (Kumar et al., 2015). Instead,
researchers work with a set of properties commonly thought to characterise de-anchored expectations, such
as sensitivity of long-term expectations to inflation news or short-term expectations. A common theme
of de-anchoring is that households perceive temporary shocks to have persistent effects, even if this is not
justified by the fundamental structure of the economy. Because these expectations are not necessarily model-
consistent, de-anchoring is not easily handled in the context of rational expectations, as Ben Bernanke pointed
out in his speech at the NBER Monetary Economics Workshop in July 2007.

2To put it differently, anchored expectations can reduce the endogenous amplification of shocks. Among
other things, this result shows up in the flatter reduced-form New Keynesian Phillips curve of (Hazell et al.,
2022)

3In this paper I study the possibility of de-anchoring despite the central bank’s commitment to stable
inflation. Of course, de-anchoring can also arise when the central bank does not attempt to stabilise inflation,
e.g. because it misinterprets the state of the economy or because it accommodates the fiscal authority. In
this case policy prescriptions are more straightforward compared to the case when de-anchoring is driven by
agents’ beliefs.
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cost of expectations de-anchoring. Second, near the ZLB the optimal inflation response is

significantly higher when expectations are endogenously anchored compared to rational ex-

pectations. Third, Price Level Targeting near the ZLB can actually de-stabilise the economy

unless the central bank reacts extremely aggressive to movements of inflation.

The key feature of my model is that a representative household weighs his beliefs about

whether or not the Taylor principle is satisfied: if he trusts the central bank to stabilise the

economy (i.e. the Taylor principle is satisfied) he forecast output and inflation tomorrow as

a linear function of exogenous shocks today. That is, he forms expectations using the same

functional form as under rational expectations, which he estimates using adaptive learning

(Evans and Honkapohja, 2001). Conversely, if he does not trust the central bank to stabilise

the economy he forecasts in output and inflation using a random walk. Every period he

evaluates the forecasting performance of the two forecasting functions, adjusts his beliefs

about the central bank’s responsiveness, and changes the way he forms expectations going

forward. In other words, he chooses between two forecasting heuristics in the sense of Brock

and Hommes (1997) (so that the model henceforth will be called heuristic switching model).

For example, if he observes that the random walk forecast yields smaller forecast errors, he

perceives it to be more likely that the central bank is not committed to stabilise inflation.

Therefore, he will put more weight on the random walk forecasting function going forward.

This weight has a direct interpretation as the degree of de-anchoring because determines the

pass-through of short-term conditions to long-term expectations. Thus, de-anchoring occurs

when the central bank is not believed to stabilise inflation.

Figure 1: 10-year Ahead U.S. Inflation Expectations & Realised Inflation

This theory of expectation formation embedded in an otherwise standard New Keynesian

(NK) framework provides a novel, quantitatively realistic model of endogenous expectation

de-anchoring. The model features the same steady state as under rational expectations (RE)
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but when expectations de-anchor, the volatility of output growth and inflation increases. As

long as monetary policy is unconstrained, it can prevent expectations de-anchoring to cause

inflationary or deflationary spirals as long as it reacts more than one-to-one to inflation, i.e.

if the Taylor principle is satisfied. However, if monetary policy is constrained by the zero

lower bound, de-anchoring can lead to self-reinforcing deflationary spirals (a feature absent

from the standard rational expectations model and different from the self-fulfilling liquidity

trap of Benhabib et al. (2002), for example). Thus, the potential welfare loss of de-anchoring

is asymmetric and bigger in a low-interest rate environment. My results have implications

regarding the monetary policy regime most likely to ensure macroeconomic stability. I find

that Inflation Targeting ensures stationary model dynamics even when expectations are

fully de-anchored. However, under Price Level Targeting there exists a threshold level of

de-anchoring, above which the model becomes unstable unless the central bank is extremely

responsive to inflation. This is the case because the combination of random walk forecasting

and a history-dependent policy rule leads to explosive dynamics. To prevent this scenario,

a central bank would have to react to inflation movements by adjusting the interest rate

more than threefold for realistic slopes of the Phillips curve. Thus, my findings provide

an even stronger case against PLT when agents are not fully rational than the arguments

brought forward by Mele et al. (2020), contradicting the well-established result under rational

expectations of Evans (2012), for example.

I subsequently estimate the model using a particle filter and U.S. expectations data.

Here, I first establish that indeed, the model with forecast switching fits the data much

better than a standard rational expectations model. In fact, this is a common property

of models that deviate from rational expectations (e.g. Milani, 2007). Furthermore, the

model-implied long-term inflation expectations fit the data quite well even though long-term

expectations were not used in the estimation. Consequently, the model-implied long-term

expectations the same degree of time-varying sensitivity to news as the observed forecasts

of the SPF. Finally, the model-implied weight put on the random walk forecasting function

implies that expectations were highly de-anchored in the early 1980s. Since the late 1980s

expectations have been largely anchored, with temporary upticks in degree of de-anchoring

coinciding with the recessionary periods of the early 1990s and 2000s. Since 2021, however,

the estimated model detects a significant uptick in the de-anchoring of expectations.

After having established that the estimated model provides a realistic description of ex-

pectation formation, I use simulation methods to investigate the conduct of monetary policy

when the anchoring of expectations is evolving endogenously. First, I show that the opti-

mal inflation response in a Taylor rule significantly varies with the prevailing equilibrium

interest rate: In a high nominal interest rate the central bank optimally responds less to
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inflation compared to the rational expectations model because overly aggressive interest

rate fluctuations can lead to expectations de-anchoring themselves. That is, a central bank

faces the trade-off between missing its inflation target, which can give rise to expectations

de-anchoring, and excessive interest rate fluctuations which, depending on the expectation

formation, can equally give rise to expectations de-anchoring (mirroring the results of Eu-

sepi et al. (2020a) and Gáti (2023)). In a low nominal interest rate environment, i.e. when

the Zero Lower Bound is often a binding constraint, the central bank optimally responds

much more strongly to inflation compared to the rational expectations model, indicating

how large the welfare loss of de-anchoring at the zero lower bound is. Second, I augment

the analytical discussion of the stability properties of Inflation Targeting as well as Price

Level Targeting by evaluating their respective welfare implications in the simulated model.

Here, I show that in a high interest rate environment Price Level Targeting leads to higher

welfare than Inflation Targeting, consistent with the literature. However, at the Zero Lower

bound, Price level Targeting can be destabilising: Due to the zero lower bound it fails to

generate to generate offsetting inflation necessary to make up for past inflation misses, which

causes a rapid credibility loss and prevalence of random walk forecasting. This shift is much

more detrimental under Price Level Targeting than under Price Level. In a final step of

this simulation exercise, I confirm the optimal policy recommendation of Gáti (2023): a

central bank can improve welfare by reacting forcefully to movements in long-term inflation

expectations. This allows the central bank accommodate inflation fluctuations when expec-

tations are well-anchored, while implicitly conditioning its reaction function on the degree

of de-anchoring. However, my simulated model suggests that the central bank needs to be

much less aggressive to achieve this goal than suggested by Gáti (2023).

With this set of results, I contribute to the literature on the conduct of monetary policy

under endogenously (de-)anchored inflation expectations. Here, several studies have drawn

on the seminal work of Marcet and Nicolini (2003) and modelled the anchoring of expec-

tations by endogenising the learning gain in a standard adaptive learning set-up. In this

approach, the learning gains is a function of realised forecast errors, resulting in an endoge-

nously time-varying sensitivity of expectations to forecast errors. Using this approach, Gáti

(2023) argues that monetary policy should respond more aggressively when expectations

de-anchor to suppress the volatility caused by high degrees of de-anchoring. Even though

this is a common result in the adaptive learning literature, in the context of de-anchoring

it critically depends on the modelling of interest rate expectations: If interest rate expec-

tations are subject to the same type of behavioural modelling, the central bank optimally

responds less strongly to inflation (compared to rational expectations) because it otherwise

adds additional volatility on top of the volatility coming from inflation expectations (Eusepi
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et al., 2020b; Gáti, 2023).

In contrast, I model de-anchoring using the endogenous switching between different fore-

casting functions: de-anchoring is not determined by the size of the learning gain, but

depends on whether or not the central bank is trusted to stabilise the economy. Despite this

different modelling set-up, there exists an implicit mapping between the two approaches:

Modelling de-anchored expectations as a random walk forecast results in a series of aggre-

gate expectations that display a realistic time-varying sensitivity to forecast errors, i.e. a

time-varying learning gain. However, this setup of endogenous forecast switching allows

me to analytically analyse the model stability for different degrees of de-anchoring under

different policy regimes.

With this approach, my paper is also closely related to the literature on the conduct of

monetary policy under endogenous central bank credibility that builds on the framework by

Brock and Hommes (1997). Here, for example, Honkapohja and Mitra (2020) discuss the

stability conditions of price level targeting. Further studies in this literature investigate,

for example, forward guidance under endogenous credibility (Goy et al., 2020). In a similar

fashion, Lansing (2021) models a rational agent who optimally updates his beliefs about

the probability of being on the transition path to the targeted equilibrium or deflation

equilibrium.

Against the backdrop of this literature, the first main contribution of my paper is that

it provides a (potentially first4) New Keynesian model with endogenous expectations de-

anchoring that is fully estimated using likelihood methods and expectations data. As a

second main contribution, I use this model to discuss the conduct of monetary policy when

the anchoring of expectations is determined endogenously. Here, my results demonstrate

that it is crucial to distinguish between the threat of de-anchoring at the Zero Lower Bound

from de-anchoring away from the ZLB, as the two cases carry drastically different outcomes

and call for different policy measures.

More generally, this paper is connected to the wide literature on the empirical properties

of inflation expectations, especially the part of the literature investigates whether expecta-

tions are anchored or not (e.g. Levin et al., 2004; Beechey et al., 2011; Strohsal et al., 2016;

Reis, 2021). Here, Carvalho et al. (2023) estimate a model of expectations with endogenous

gain learning in a partial equilibrium set-up. Their estimates indicate that expectations were

poorly anchored before the late 1990s, with long-run expectations displaying high sensitivity

4To the best of the author’s knowledge this is the first paper to do so. This stands in contrast to
Carvalho et al. (2023), who estimate the process for inflation as well as inflation expectations only; to Gáti
(2023), who uses simulated method of moments to estimate a subset of parameters; and to Ozden (2021) &
Ozden and Wouters (2021) who do not use expectations data to estimate the parameters of their endogenous
expectations switching model.
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to new information. In this context, the main contribution of this paper is that the estimated

model yields an extended measure expectations de-anchoring. This measure suggests that

expectations became de-anchored to a significant degree starting in 2021.

The paper proceeds as follows. Section 2 introduces the model with heterogeneous expec-

tations. Section 3 describes the model solution and stability properties. Section 4 describes

the estimation procedure and illustrates the dynamics of the estimated model. Section 5.2

analyses the performance of different monetary policy rules by simulating the estimated

model. Section 6 concludes.

2. A Model of De-anchoring

I use a standard New Keynesian (NK) model to study the de-anchoring of expectations. To

isolate the effect of de-anchoring, I keep the model simple and only introduce one distortion,

sticky prices à la Rotemberg (1982). In the following, I first lay out the non-linear version of

the model before turning to the linearised version and discussing the expectation formation.

2.1. The New Keynesian Framework

The model is populated by a representative household, intermediate and final goods produc-

ers, a central bank, and the government. The representative chooses consumption Ct, labour

Ht, and government bonds Bt to maximise the expected discounted stream of utility

Ê0

∞∑
t=1

βtΞt−1

[
C1−σ
t

1− σ
− χ

H1+η
t

1 + η

]
(1)

subject to the budget constraint

PtCt +Bt = PtWtHt +Rt−1Bt−1 + PtDivt + Tt (2)

where Ê is the non-rational expectations operator, Ξt is a shock to the discount factor,

Pt is the price level, Wt is the real wage, Rt is the gross interest rate, Tt is a lump-sum

tax and Divt are real profits from the intermediate good firms. Bt denotes the one-period

government bonds in zero net supply. Solving the representative household’s problem yields

the intertemporal Euler equation

1 = βRtÊt
Ξt

Ξt−1

(
Ct

Ct+1

)σ 1

Πt+1
(3)

and the intratemporal labour supply condition

Wt = χHη
t C

σ
t (4)

6



where ζt =
Ξt

Ξt−1
follows an AR(1) process in logs.

The final goods producers transform intermediate goods into the homogeneous good,

which is obtained by aggregating intermediate goods using the following technology

Yt =

(∫ 1

0
Yt(i)

ϵ−1

ϵ dj

) ϵ

ϵ−1

(5)

where Yt(i) is the intermediate good of firm i. The price index for the aggregate homogeneous

good is

Pt =

[∫ 1

0
Pt(i)

1−ϵdj

] 1

1−ϵ

(6)

and the demand for the differentiated good j ∈ (0, 1) is

Yt(j) =

(
Pt(i)

Pt

)−ϵ

Yt (7)

The intermediate goods producer i produces using labour as the only input with a

constant return to scales technology

Yt(i) = AHt (8)

where A denotes the total factor productivity. The firm i sets the price Pt(i) of its differen-

tiated good to maximise its profits

max
Pt+j(i)

Et

∞∑
j=0

Λt,t+j

((
Pt+j(i)

Pt+j
− MCt+j

Pt+j
Mt+j

)
Yt+j(i)−

φ

2

(
Pt+j(i)

Pt+j−1(i)
− 1

)2

Yt+j

)
(9)

subject to the demand curve for intermediate goods and where Π ≥ 1 is the steady-state

inflation rate, Mt is an exogenous mark-up shock that follows an AR(1) process in logs,

and Λt,t+1 is the household’s stochastic discount factor. The parameter φ ≥ 0 measures the

cost of price adjustment in units of the final good with φ = 0 leading to the flexible-price

output level Y ∗
t . Solving the intermediates firm problem, the optimal pricing rule implies in

a symmetric equilibrium that

φ

(
Πt

Π̄
− 1

)
Πt

Π̄
= (1− ϵ) + ϵMCtMt + φÊtΛt,t+1

(
Πt+1

Π̄
− 1

)
Πt+1Yt+1

Π̄Yt
(10)

The fiscal authority sets taxes to balance the budget in every period so that the aggre-

gate resource constraint is

Ct = Yt

[
1− φ

2

(
Πt

Π̄
− 1

)2
]

(11)

Combining and linearising Equations (1) - (11) around the zero-inflation steady state

yields the familiar 3 equation system (where lower case letters symbolise deviations of the
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respective variable from its steady state)

yt = Êt {yt+1} − 1
σ

(
rt − Êtπt+1 + ξt

)
πt = βÊt {πt+1}+

ε− 1

φ
(σ + χη)︸ ︷︷ ︸
≡κ

yt +
ε− 1

φ︸ ︷︷ ︸
≡λ

µt (12)

with

µt = ρaµt−1 + εµt

ξt = ρξξt−1 + εξt
(13)

where µt is the log-linearised mark-up shock. The shocks εµt and εξt are distributed normally

with standard deviations σµ and σξ around a mean of zero.

To close the model, I consider two different monetary policy frameworks for the central

bank, Inflation Targeting and Price Level Targeting. Under Inflation Targeting, the central

bank follows a standard Taylor rule subject to the zero lower bound

rt = max [0, π̄ + ϕπ(πt − π̄) + ϕyyt +mt] (14)

where mt evolves according to

mt = ρmmt−1 + εrt εrt ∼ N (0, σr)

Under Price Level Targeting the central bank reacts to the deviation of the price level pt

from the target price level path p∗t

rt = max [0, π̄ + ϕπp̂t + ϕyyt +mt] (15)

where, for some given π0, the price level gap p̂t evolves according to p̂t = πt − π̄ + p̂t−1 and

p̂t−1 enters the model as an additional state variable.

2.2. Endogenous Anchoring of Expectations

To model the endogenous (de-)anchoring of expectations, I deviate from rational expecta-

tions and assume that the representative household does not know the true structure of the

economy. Instead, he forms believes about the state of the world he is in. That is, he weighs

his beliefs about whether or not the Taylor principle is satisfied: if he trusts the central bank

to stabilise the economy (i.e. he believes the Taylor principle to be satisfied) he forecast

output and inflation tomorrow as a linear function of the exogenous states today. That is,

he forms expectations using the same functional form as under rational expectations, which

he estimates using adaptive learning (Evans and Honkapohja, 2001). Conversely, if he does
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not trust the central bank to stabilise the economy he forecasts output and inflation using a

random walk. Every period he evaluates the forecasting performance of the two heuristics,

adjusts his beliefs about the central bank’s responsiveness, and changes the way he forms

expectations going forward. That is, he chooses between two forecasting heuristics in the

sense of Brock and Hommes (1997). The agent’s average forecast is a weighted average of

the two forecasting heuristics, i.e.

Êtzt+1 = (1− nt)Ê
a
t zt+1 + ntÊ

n
t zt+1 (16)

where Êa denotes the expectations under the adaptive learning heuristic, Ên denotes the

expectations under the naive random walk heuristic, nt is the weight put on the random

walk forecasting function, and zt is a vector containing the endogenous realisation yt, πt, rt

(and, in the case of Price Level Targeting, also the price level gap p̂t).

If the household believes that the central bank stabilises the economy, he assumes that

the endogenous variables zt evolve according to the following linear perceived law of motion

(PLM):

zt = Ψtxt−1 + ϵt (17)

where Ψt = [at, bt] and xt = (1, ξt, µtmt)
′ so that the corresponding forecast becomes

Êa
t zt+1 = Ψxt (18)

Under Price Level Targeting the adaptive forecasting heuristic additionally makes use of the

lagged price level gap to forecast z so that Ψt = [at, bt, c̃t] and xt = (1, ξt, µt mt, p̂t−1)
′.5 In

both cases, the representative household forecasts inflation and output tomorrow as a func-

tion of the exogenous states of the economy today, as under rational expectations. However,

he does not know the exact quantitative relationship between the exogenous shocks and the

endogenous variables. Therefore, each period the household re-estimates the perceived law

of motion and updates the parameters Ψt following:

Ψ′
t = Ψ′

t−1 + γR−1
t−1xt−2 (zt−1 −Ψt−1xt−2)

′

Rt = Rt−1 + γ
(
xt−2x

′
t−2 −Rt−1

) (19)

where γ is the constant gain parameter which determines the weight given to new informa-

tion. A constant γ implies that recent observations receive a higher weight than older ob-

servations (resembling the experience-based learning documented by Malmendier and Nagel

(2016)). If instead γ = 1/t, each observation would be weighted equally, and the updating of

5c̃t is a 3× 1 vector of coefficients assigned to the lagged price level gap and denoted by a tilde because
later it will be convenient to define c = [03×2 c̃]
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coefficients would be equivalent to running a recursive OLS regression in every period.

If the household does not believe that the central bank will stabilise the economy, he

forecasts that output and inflation follow a random walk (i.e. he believes that ϕπ = 1):

Ên
t zt+1 = Ên

t zt = zt−1 (20)

Each period, the household re-evaluates the likelihood of being in each of the two worlds,

i.e. whether or not the Taylor Principle is satisfied. He does so by evaluating the forecast

performance of the two forecasting functions in terms of the sum of squared forecast errors.

A logistic function maps the forecast errors into a weight nt that represents the likelihood

of being in a world with passive monetary policy:6

nt =
exp

(
−θent−1

)
exp

(
−θent−1

)
+ exp

(
−θeat−1

) (21)

with

eit = (1− ω)eit−1 + ωεit i ∈ {a, n} (22)

where eit−1 is the recursive weighted average of the sum of squared forecast errors εit. That

is, the household avoids making systematic forecasting mistakes by switching to the better

performing forecast rule. The two parameters ω and θ jointly determine how the household

interprets the performance of the two forecasting functions: ω controls the rate at which

previous forecast errors decay, i.e. the length of households’ memory. θ determines the

sensitivity to differences in the forecasting performance: when θ → ∞, the household imme-

diately switches to the forecasting rule with the lower forecast error. Conversely, with θ = 0

the household never switches and the weights remain fixed at 0.5. Any intermediate value

implies an imperfect adoption of the better performing forecast rule. In the steady state the

weight put on each forecasting function is equal to n = 0.5 because there are no exogenous

shocks and neither forecasting function makes any forecast error.

This heuristic switching mechanism provides an easy statistic measuring the degree of

expectation anchoring: when expectations are well anchored, the adaptive rule will produce

good forecasts and the weight put on the random walk forecasting statistics will go down.

When expectations are not well anchored, for example, because the central bank does not

react enough to offset shocks that move away output and inflation from their target, the

adaptive rule will produce bad forecasts and more weight will be put on the random walk

forecasting heuristic. Monetary policy can affect these dynamics by sending correct signals

for the evolutionary selection of the heuristics and induce stable dynamics converging to the

6This expression naturally arises if the forecasting performance is not perfectly observed (a reasonable
assumption given the frequent revisions of gdp-related measures) but instead is observed with a logistically
distributed noise term (e.g. Anufriev et al., 2013; De Grauwe and Ji, 2019).
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rational expectations steady state.

2.3. Implied Long-term Expectations

The heuristic switching model implicitly also pins down long-term expectations. The long-

term forecast (i.e. the forecast for a horizon k sufficiently large) of the adaptive heuristic is

simply the intercept of the learning rule:

Êa
t zt+k = at (23)

Under the naive forecasting heuristic, the household extends his forecasts over horizon k as

the recursive weighted average of realisations over the previous k periods.

Ên
t zt+k = (1− 1/k)Ên

t−1zt+k−1 + 1/k zt−1 (24)

For k = 1 this nests the one quarter ahead forecast discussed previously. Furthermore, for

k → ∞ the naive forecast will converge to the mean of the process z, which corresponds to

the long-run forecast of the adaptive heuristic.

The average long-run forecast is a weighted average of the two heuristics. As before, the

weight put on the random walk forecast is pinned down by the accuracy of the one-quarter

ahead forecast.

Êtzt+k = (1− nt)Ê
a
t zt+k + ntÊ

n
t zt+k (25)

= (1− nt)a+ nt((1− 1/k)Ên
t−1zt+k−1 + 1/k zt−1) (26)

Therefore, the sensitivity of long-term inflation expectations to short-term developments

increases if the household doubts the central bank’s ability to stabilise inflation, because it

leads to a higher weight put on recent inflation developments. This expectation formation

process is empirically plausible: following a monetary policy shock, these expectations react

in the same way as observed long-run expectations (see Appendix C.1).

3. Model Equilibria and Stability

In this section I solve the model under the two different monetary policy frameworks, Inflation

Targeting and Price Level Targeting, and discuss the stability properties both away from and

at the ZLB. In each case, I first derive the fixed points of the adaptive forecasting heuristic

under some fixed weight n put on the random walk forecasting function. In a second step, I

use these fixed points to characterise the steady state under time-varying nt. In a third step,

I discuss the E-Stability of this steady state, i.e. whether the steady state can be learned.7

7E-stability ensures that estimated coefficients of the learners converge to their respective fixed points.
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3.1. Dynamics under Inflation Targeting

To simplify the analysis, I assume that the central bank only reacts to deviations of inflation

from target (i.e. ϕy = 0). Furthermore, I initially consider an environment without the zero

lower bound in 3.1.1 before reintroducing it in 3.1.2.

3.1.1. Away from the ZLB

Substituting the monetary policy rule as well as the perceived laws of motion (17) & (20)

into the system of equations (12) and rearranging yields the Actual Law of Motion (ALM)

yt = (1− nt)[ay + by,ξξt + by,µµt + by,mmt] + ntyt−1 −
1

σ
(π̄ + ϕπ(πt − π̄)

+mt − (1− nt)[aπ + bπ,ξξt + bπ,µµt + bπ,mmt]− ntyt−1 + ξt)

πt = β[(1− nt)[aπ + bπ,ξξt + bπ,µµt + bπ,mmt] + ntπt−1] + κyt + λµt

(27)

or in matrix notation

⇔ zt = A [(1− nt)(a+ bwt) + ntzt−1]︸ ︷︷ ︸
Êtzt+1

+Bwt +Cz̄ (28)

Substituting (28) into the ODE associated with the updating equations (19) yields

∂Ψ′

∂τ
= R−1Ext−2 (A [(1− n)Ψxt−1)] +Anzt−2 +Bwt +Cz̄)−Ψxt−2)

′ (29)

where τ denotes notional time (Evans and Honkapohja, 2001). As long as the ALM in

Equation (28) is asymptotically stationary, i.e. has roots within the unit circle so that it is

mean-reverting

λ < 1 ∀λ ∈ Λ = {Λ : |I− nA−ΛI| = 0} (30)

and when holding n fixed, the coefficients of the adaptive PLM converge to their respective

fixed points (for a detailed derivation see Appendix A)

vec(ā′) =(I −A)−1vec
(
(Cz̄)′

)
(31)

vec(b̄′) = (I −G1)
−1G2vec(B

′) (32)

where

G1 =A(1− n)⊗ F+An⊗Σw
−1 (I − nA⊗ F)A(1− n)⊗Σw

G2 =I⊗ F+An⊗Σw
−1I⊗Σw (I − nA⊗ F) I⊗Σw

Holding n fixed, the mapping T from the perceived to the actual law of motion can therefore

12



be characterised as

T (Ψ′, n) =

(
T (a′, n)

T (b′, n)

)
=

((
(I −An)−1A(1− n)

)′
G1

)
(33)

This result is summarised in the following proposition:

Proposition 1. The mapping (33) from the PLM to the ALM has a unique fixed point

∀n ∈ [0, 1] if the Taylor principle is satisfied by the central bank, i.e.

ϕπ > 1

Proof. See Appendix A.1.

The fixed point ā is independent of n and equivalent to the steady state under rational

expectations:

ā = (I−A)−1Cz̄ =

(
0 1−β

κ

0 1

)(
ȳ

π̄

)
(34)

On the other hand, b̄ is a non-linear function in n. Intuitively, two offsetting effects determine

the magnitude of b̄: as n decreases wt has a stronger effect on zt because the average forecast

of zt+1 loads stronger on wt. At the same time, as n decreases, the correlation between zt+1

and zt decreases so that wt has a smaller effect on zt+1.

Now, if nt is allowed to vary over time, only nt = 0.5 is consistent with a steady state

in which both heuristics do not make any forecast error. This allows me to characterise a

unique steady state under heterogeneous expectations:

Proposition 2. The dynamic system (27) has a unique steady state with π∗ = π̄, y∗ = 1−β
κ
π̄,

r∗ = π̄ and n∗ = 0.5

Proof. See Appendix A.2

For this steady state to be stable it is necessary that 1) the process zt is stationary for

n = 0.5 so that the fixed point of the mapping T exists and that 2) the steady state is

e-stable, i.e. learnable. According to the E-stability principle (Evans and Honkapohja, 2001,

Chapter 13), convergence under learning requires that all eigenvalues of

DTΨ(Ψ′, n))− I (35)

need to have negative real parts to ensure that estimated coefficients of adaptive forecasting

function converge to their respective fixed points. Holding n∗ fixed at the steady state

and assuming that the Taylor principle is satisfied (see Proposition 1), the stationarity and

E-stability requirements are always satisfied for the steady state away from the ZLB:
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Proposition 3. The steady state away from the zero lower bound is stable.

Proof. See Appendix A.3.

Figure 2: Stability Conditions

Note: This figure shows the stability properties of the model
under Inflation Targeting as a function of the weight n put on
the random walk forecasting function without and with the ZLB.
For stationarity, the minimum eigenvalue needs to be positive.
For E-stability the maximum eigenvalue needs to be negative.

Away from the steady state, the forecast switching can create, or at least amplify, booms

and busts. For example, if the adaptive forecast function underestimate inflation over several

quarters, the resulting deterioration in forecasting performance will increase the weight of the

random walk forecasting function. The resulting drift of inflation and output decreases the

weight of the minimum state variable forecast. This de-anchoring of expectations can lead

to self-reinforcing cycles which amplify the drift and poses additional challenges to monetary

policy not present in the standard rational expectations framework.

3.1.2. At the ZLB

Re-introducing the ZLB into the system, the ALM at the ZLB in matrix notation becomes

zt = Ã [(1− nt)(a+ bwt) + ntzt−1] + B̃wt + C̃z̄ (36)
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where the matrices containing the coefficients of the ZLB ALM are denoted with a tilde.

Following the same approach as before, it can be shown that the ALM has a fixed point at

vec(˜̄a) =(I − Ã)−1vec
(
(C̃z̄)′

)
(37)

vec(˜̄b′) =
(
I − G̃1

)−1
G̃2vec(B̃

′) (38)

where

G̃1 =Ã(1− n)⊗ F+ Ãn⊗Σw
−1
(
I − nÃ⊗ F

)
Ã(1− n)⊗Σw

G̃2 =I⊗ F+ Ãn⊗Σw
−1I⊗Σw

(
I − nÃ⊗ F

)
I⊗Σw

Holding n fixed, the mapping T̃ from the perceived to the actual law of motion for the PLM

coefficients at the ZLB is now given by

T̃ (Ψ′, n) =

(
T̃ (a′, n)

T̃ (b′, n)

)
=

((I − Ãn)−1Ã(1− n)
)′

G̃1

 (39)

However, this mapping has a fixed point only for certain values of n:

Proposition 4. The mapping (39) from the PLM to the ALM has a unique fixed point for

all n ∈ [0, n̄)

Proof. See Appendix A.4

For all values of n < n̄ the fixed point of ˜̄a exists and is independent of n. Furthermore,

it is equivalent to the steady state under rational expectations:

˜̄a = (I− Ã)−1C̃z̄ =

(
0 0

0 0

)(
ȳ

π̄

)
(40)

Again, if nt is allowed to vary over time, only nt = 0.5 is consistent with a steady state in

which neither heuristic makes any forecast error. This allows me to characterise a second

steady state under heterogeneous expectation:

Proposition 5. There exists a second steady state with π̃∗ = 0, ỹ∗ = 0, r̃∗ = 0 and n∗ = 0.5

Proof. See Appendix A.5

However, the ZLB steady state is not stable because either n̄ < 0.5 so that the process

zt is not stationary at the steady state or because it is not E-stable:

Proposition 6. The zero lower bound steady state is either not asymptotically stationary or

not E-stable.

Proof. See Appendix A.6
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In general, at the ZLB both conditions (asymptotic stationarity and E-stability) never

hold at the same time. This is because the eigenvalues of DT̃Ψ(Ψ
′, n)− I have negative real

parts only if the eigenvalues of nÃ are outside the unit circle, as Figure 2 illustrates.

To summarise, under Inflation Targeting the model has two steady states: one steady

state away from the ZLB and one at the ZLB, but only the former is stable. These steady

states are identical to the ones under rational expectations. However, the model features

complex dynamics away from the steady state: whenever the households puts more (or less)

weight on the random walk forecasting function, the relationship between exogenous and

endogenous realisations changes so that adaptive learning rules will change. This in turn

affects performance of the random walk forecasting function, creating fluctuations around

the steady state.

3.2. Dynamics under Price Level Targeting

Under Price Level Targeting the fixed points ā, b̄, c̄ of the adaptive forecasting heuristic are

all (non-linearly) dependent on each other so that no closed-form solution can be derived.

To characterise the solution at least computationally, I keep the assumption of ϕy = 0 and,

furthermore, assume that the shocks wt are iid. Under the adaptive forecasting function,

the household, therefore, only forecasts the mean values of the state variables, i.e. engages

in steady-state learning. This does not change the stability properties of the system but

simplifies the analysis. As before, I first consider the steady state in an environment without

the zero lower bound before reintroducing it.

3.2.1. Away from the ZLB

Substituting the monetary policy rule (15) as well as the perceived laws of motion (20) &

(17) into the system of equations (12) and rearranging yields the ALM

yt = (1− nt)[ay + by,ξξt + by,µµt + by,mmt + cy,p̂p̂t−1] + ntyt−1 −
1

σ
(π̄ + ϕπ(πt − π̄ + p̂t−1)

+mt − (1− nt)[aπ + bπ,ξξt + bπ,µµt + bπ,mmt + cπ,p̂p̂t−1]− ntyt−1 + ξt)

πt = β[(1− nt)[aπ + bπ,ξξt + bπ,µµt + bπ,mmt + cπ,p̂p̂t−1] + ntπt−1] + κyt + λµt

p̂t = πt − π̄ + p̂t−1

(41)

Or in matrix notation:

zt = A[(1− nt)(a+ bwt + czt−1) + ntzt−1] +Dzt−1 +Bwt +Cz̄ (42)
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where c = [03×2 c̃]. Substituting this into the ODE of the updating equations (19) yields8

∂Ψ′

∂τ
= R−1Ext−2 (A [(1− n)(a+ bwt + czt−2)] +Anzt−2 +Bwt +Cz̄)−Ψxt−2)

′ (43)

To characterise the fixed points of the adaptive forecasting heuristic, I start with the fixed

point c̄ which determines the other two fixed points. Unfortunately, the associated mapping

∂c′

∂τ
= Σ−1

p Σ−1
pt−2,pt−1

(A(1− n)c:,3 +D:,3 + nA:,3) +Σ−1
p Σpt−2,(yt−1,πt−1)(D1:2 + nA1:2) (44)

does not allow a closed form solution of the fixed point and must be solved numerically for

c̄. Having pinned down c̄ this way, we can write (holding (Ψ, n) fixed) limt→∞Ezt as

zt(Ψ, n) =
(
(I−A(1− n)c− nA−D)−1 (A [(1− n)a] +Cz̄)

)′
(45)

as long as the ALM in Equation (42) is asymptotically stationary, i.e.

λ < 1 ∀λ ∈ Λ = {Λ : |I−A(1− n)c− nA−D−ΛI| = 0} (46)

The fixed point ā then becomes

vec(ā′) =
[
(I + (A(1− n)c̄+ nA+D)(I − (A(1− n)c̄− nA−D)−1 −A(1− n)

]−1
vec
(
(Cz̄)′

)
(47)

Finally, the fixed point b̄ is then given by

vec(b̄′) = [I − (A(1− n)c̄+D+ nA)⊗ IA(1− n)⊗ I]−1 (A(1− n)c̄+D+ nA)⊗ I vec(B)′

(48)

Holding n fixed, the mapping T from the perceived to the actual law of motion for the PLM

coefficients is now given by

T (Ψ′, n) =

 ((I+ (A(1− n)c̄+ n ∗A+D)(I−A(1− n)c̄+ n ∗A+D)−1)A(1− n))′

((A(1− n)c̄+D+ nA)⊗ IA(1− n)⊗ I)′

Σ−1
p Σ−1

pt−2,pt−1
(A(1− n)c:,3 +D:,3 + nA:,3)

′ +Σ−1
p Σpt−2,(yt−1,πt−1)(D:,1:2 + nA:,1:2)

′


(49)

For the mapping T to have a fixed point, all eigenvalues of I−A((1−n)c+n)−D need to

have positive real parts (this is equivalent to eigenvalues of A((1−n)c+n)+D being within

the unit circle). Unfortunately, a full characterisation of these eigenvalues is cumbersome

and provides few general insights. Importantly, the left panel of Figure 3 demonstrates that

this condition is not satisfied for all values of n: the eigenvalues can turn negative if the

household puts too much weight on the random walk forecasting function.

Therefore, as under inflation targeting at the zero lower bound, there exists a threshold

weight n̄. If the the household puts more weight on the random walk forecast than n̄

8where c:,3 denotes the third column of c, i.e. c:,3 = c̃.
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Figure 3: Stability Conditions under Price Level Targeting

Note: This figure shows the stationary properties of the model under Price Level Targeting (i.e. the
smallest real part of the eigenvalues of I −A((1− n)c+ n)−D) as a function of weight n put on the
random walk forecasting function. For the model to be stationary all eigenvalues need to have positive
real parts.

the model is not stationary anymore and the mapping T does not have a fixed point. To

demonstrate how this instability property depends on the parameterization of the model,

Figure 4 illustrates which combination of ϕπ and κ lead to a stationary process zt in the

case of completely de-anchored expectations (i.e. n = 1). That is, the non-shaded area

indicates the region for which the minimum eigenvalue of I − A − D is positive. Except

for the limit case of a completely flat NKPC (i.e. κ = 0), the magnitude of ϕπ required to

prevent expectations de-anchoring from causing explosive dynamics is decreasing in the slope

of the Phillips curve. Importantly, expectations de-anchoring leads to explosive dynamics for

empirically reasonably flat slopes of the Philips curve under Price Level Targeting unless the

central bank is extremely responsive to deviations from the price level target (e.g. κ = 0.2

would require ϕπ > 3.5, κ = 0.1 would require ϕπ > 6.5).
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Figure 4: Stationarity under Price Level Targeting for n = 1

Note: This figure shows the stationarity properties of the model under Price Level Targeting under
the limit case in which the household only uses the random walk forecasting function (i.e. n = 1) as
a function of the NKPC slope κ and the central bank’s responsiveness ϕπ to price level gaps. The
shaded area displays parameter combinations in which the model is non-stationary, i.e. the eigenvalues
of I −A−D are negative.

In case the model is indeed stationary and a fixed point exists, then the fixed point ā

itself is independent of n and equivalent to the steady state under rational expectations:

ā = (I−A)−1Cz̄ =


0 1−β

κ 0

0 1 0

0 0 0



ȳ

π̄

p̄

 (50)

On the other hand, b̄ and c̄ are non-linear functions of n. Again, if nt is allowed to vary

over time, only nt = 0.5 is consistent with a steady state in which neither heuristic makes

any forecast error. In case the fixed point of c̄ exists for n = 0.5 (i.e. n̄ ≥ 0.5), this implies

an unique steady state under Price Level Targeting:

Proposition 7. The dynamic system (41) has a unique steady state with π∗ = π̄, y∗ = 1−β
κ
π̄,

r∗ = π̄, p̂∗ = 0 and n∗ = 0.5

Proof. See Appendix A.7.

As before, for this steady state to be stable it is necessary that 1) the process zt is

stationary for n = 0.5 (i.e. n̄ ≥ 0.5) so that the fixed point of the mapping T exists and that

2) the eigenvalues of

DTΨ(Ψ′, n))− I (51)

need to have negative real parts to ensure that the perceived law of motion converges to its

fixed point and the steady state is learnable. As argued previously, the stationarity of the
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process crucially depends on the parameterization of the model so the stability of the steady

state under Price Level Targeting is not a universal property. However, as the right panel

of Figure 3 shows, n̄ ≈ 0.95 under the estimated parameters (see next Section), so that the

process zt is stationary and a fixed point indeed exists for the steady state value of n = 0.5.

In fact, the process zt is stationary for all parameter combinations considered in Figure 4

when n = 0.5. Furthermore, the right panel of Figure 3 shows that the steady state is also

E-stable under the estimated parameters (see next Section).

In general, under the estimated parameters, there exists a stable steady state under

Price Level Targeting but the model is at risk of becoming non-stationary for high degrees

of de-anchoring even away from the ZLB.

3.2.2. At the ZLB

At the ZLB the ALM in becomes

zt = Ã [(1− nt)(a+ bwt + czt−1) + ntzt−1] + D̃zt−1 + B̃wt + C̃z̄ (52)

where the matrices containing the coefficients of the ZLB ALM are denoted with a tilde. In

this case no steady state exists: the price level gap at the zero lower bound follows a unit

root because no deviation of inflation from target can be offset by the central bank.

Proposition 8. Under Price Level Targeting no steady state exists at the zero lower bound

Proof. See Appendix A.8.

To summarise, under Price Level Targeting there is only the steady state away from the

zero lower bound. Differently from the case under Inflation Targeting, this steady state is not

stable for all n ∈ [0, 1] but only for n ∈ [0, n̄). The question remains whether this threshold

will ever be crossed so that Price Level Targeting could lead to unstable dynamics. I will

address this questions using simulation methods in Section 5.

4. Estimation and Model Dynamics

4.1. Estimation

I estimate the model using Bayesian methods to assign realistic values to the non-standard

parameters θ and ω. Besides estimating the relevant parameters, this also allows me to ex-

tract an estimate of the unobserved degree of de-anchoring over time. Furthermore, Bayesian

estimation provides a coherent framework to compare the data fit of the heuristic switching

model with the standard rational expectations model. Due to the non-linear elements of
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the heuristic switching model, I compute the model likelihood ln p(Y | ΩHSM) of observing

the data Y given the parameter vector ΩHSM using the bootstrap particle filter with 20,000

particles. The likelihood of the rational expectations model, on the other hand, can be

computed using the Kalman filter because the model is fully linear.

The model is estimated on data from 1982Q1 to 2008Q4. I exclude the zero lower

bound period because this would add yet another source of non-linearity to an already

computationally complex estimation process. To match the average expectations of the

heuristic switching model, I use the average 1Q ahead expectations from the Survey of

Professional Forecasters for real GDP growth as well as the change of the implied GDP price

deflator. To match the contemporaneous information set available to forecasters, I use the

third release of the quarter-on-quarter growths rates for real GDP as well as the implied

GDP price deflator. Finally, I match the model interest rate using the actual Federal Funds

Rate (adjusted to quarterly frequency) since it is not subject to revisions. As in Carvalho

et al. (2023), I do not use observed long-term expectations in the estimation. Instead, I will

back out the model-implied long-term expectations in the next section and compare them

to the available data. Therefore, the measurement equation is

Yt = Γ0 + Γ1Zt +Hϵt (53)

where the vector Yt includes the five observable data series; Γ0 contains the means of real

GDP growth, the quarterly Federal Funds Rate, the expected real GDP growth, and zeros

for (expected) inflation; and the observation matrix Γ1 selects the corresponding variables

from the state vector Zt. Since the particle filter requires some measurement error ϵt to avoid

degeneracy, the variance H′H of the measurement error is set to 20% of the variance of Yt.
9

I use the posterior mean ΩRE of the rational expectations model as a starting point to

estimate the heuristic switching model in a two step procedure: I first estimate the model

using the Kalman filter and take the resulting posterior as starting point for the particle

filter. In each case, I use the Metropolis-Hastings algorithm with 20,000 draws and 10

separate chains to compute the full distribution.10 11

9For comparability, I use the same assumption when estimating the RE model using the Kalman Filter.
10The particle filter generates random numbers at several steps of the computation so I reset the seed of

the random number generator every time the likelihood is evaluated to avoid injecting randomness in the
calculation of the likelihood (see e.g. Fernández-Villaverde and Rubio-Ramı́rez, 2007; Carvalho et al., 2023).
I thereby fix the random initial conditions for the nonlinear state variables; the random draws to compute
shocks in the nonlinear prediction step; and random draws in the resampling step so that the particle filter
uses the same particles for every new parameter evaluation. The MCMC sampler draws from a different
random number generator so that resetting the seed does not affect the parameter draws of the sampler.

11I scale the proposal distribution to target an overall acceptance rate of roughly 30%. Finally, I discard
the first 20% of draws as burn-in, keep every 5th remaining draw to compute the relevant moments, and
compute the estimation results using the pooled draws of all chains.
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Table 1: Prior Distributions and Posterior Estimates

Parameter Prior Posterior (RE) Posterior (HSM)

Prior Dist. Mean Std. Mean Std. Mean Std.

Discount factor β B 0.99 0.005 0.992 0.005 0.993 0.004

IES 1
σ Γ 0.5 0.2 0.155 0.071 4.771 0.600

Frisch Elast. 1
η N 0.75 0.1 0.711 0.100 1.446 0.168

Eq. Markup ϵ
ϵ−1 Γ 1.35 0.2 1.326 0.084 4.887 0.445

NKPC Slope κ Γ 0.2 0.1 0.044 0.017 0.197 0.045

AR(1) Dem Shock ρζ U(0,1) 0.5 - 0.675 0.061 0.510 0.119

AR(1) Mark-up shock ρµ U(0,1) 0.5 - 0.957 0.020 0.846 0.042

AR(1) MP shock ρm U(0,1) 0.5 - 0.700 0.067 0.770 0.069

Std. Demand Shock σζ Γ−1 1 0.5 0.689 0.239 1.014 0.200

Std. TFP Shock σa Γ−1 1 0.5 0.877 0.308 1.084 0.198

Std. MP Shock σm Γ−1 1 0.5 0.364 0.045 0.340 0.033

Feedback Output ϕy N 0.5 0.25 0.779 0.199 0.294 0.150

Feedback Inflation ϕπ N 1.5 0.25 1.187 0.158 2.009 0.157

Learning Gain γ Γ 0.03 0.01 - - 0.061 0.011

Switching Intensity θ Γ 5 2.5 - - 1.882 0.357

Initial De-Anchoring n1982Q1 B 0.75 0.1 - - 0.875 0.051

FE updating gain ω B 0.5 0.2 - - 0.711 0.127

Posterior Likelihood ln p(Y | Ω) - - - -88.284 -67.144

Marginal Likelihood (τ = 0.5) ln p(Y ) - - - -43.078 -36.511

Note: The marginal likelihood is estimated using Geweke’s Harmonic Mean Estimator with a tuning
parameter of τ = 0.5. The estimates do not change significantly for different values of τ .

The independent prior distributions are described in columns 3 - 5 of Table 1. Impor-

tantly, all autoregressive parameters follow Uniform distributions centred around 0.5, with

the variances following an inverse Gamma distribution centred around 1 with a variance of

0.5. For the constant gain parameter, the literature on adaptive learning suggests a range

of 0.01 (see Milani, 2007) to 0.06 (see Branch and Evans, 2006). I choose an intermediate

value of 0.03 as prior for γ, which follows a Beta distribution with a standard deviation of

0.01. Following the results of Cornea-Madeira et al. (2019), I impose a Gamma prior for the

regime switching parameter θ that is centred at 5 with a variance of 2.5. The prior for the

parameter governing the decay of forecast errors, ω, follows a relatively wide Beta distribu-

tion with mean 0.5 and variance 0.25. Finally, I estimate the initial weight of the random

walk forecasting function n1982Q1, assuming that inflation expectations were not perfectly

anchored during the 1980s: the prior for n1982Q1 follows a Beta distribution centred at 0.75

with standard deviation 0.125. This initial weight in turn pins down the initial values for
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Ψ1982Q1 and yields values for the initial forecast errors ei1982Q1.

The posterior distributions of the heuristic switching (rational expectations) model are

presented in columns 8 & 9 (6 & 7) of Table 1. Relative to the RE model, the HSM suggests

a lower real interest rate over the sample period (2.82% vs 3.23%). In line with previous

literature (e.g. Ormeno, 2009; Del Negro and Eusepi, 2011; Milani, 2011), the HSM requires

somewhat fewer sources of mechanical persistence than the rational expectations model, as

the posterior mean of the AR(1) coefficient for demand and mark-up shocks is significantly

lower (the opposite, however, is true for monetary policy shocks). On the other hand,

the estimated standard deviations of demand & mar-up shocks are larger under HSM than

under RE (again, this is not the case for monetary policy shocks). The posterior estimate

of γ = 0.061 implies that firms and households rely on the last ∼ 4 years of data. The

posterior estimate of the switching intensity θ is quite a bit lower than in Cornea-Madeira

et al. (2019) but, just as the memory parameter ω, remarkably close to the posterior mean of

Ozden (2021). Finally, the NKPC slope estimate under rational expectations is much larger

than under forecast switching.

At the posterior mean, the HSM model fits the observed data better than the RE model.

The same still holds for the overall model fit (i.e. accounting for the additional degrees of

freedom stemming from four extra parameters by marginalising out their influence). The

estimates for marginal likelihood ln p(Y | M) in the lower panel of Table 1 suggest that the

heuristic switching model fits the data much better than the standard rational expectations

model, which is a common feature of models with non-rational expectations (Milani, 2007).12

4.2. Model Predictions

I back out the model-implied states using the nonlinear smoother of Godsill et al. (2004).

To document the recent performance of the model, I also compute the out-of-sample model

forecasts up until 2023Q2. That is, I estimate the model on the sample from 1982Q1:2008Q4

and use the resulting parameter estimates with an extended set of observables that includes

shadow interest rate of Wu and Xia (2016) to compute the out-of-sample model predictions

until 2023Q2.13 The resulting smoothed state estimates are plotted (in blue) along with the

data (in black) in Figure 5. To account for the 2020Q1-2020Q4 data outliers driven by the

Covid-19 pandemic and the resulting policy measures, I set the measurement error in these

4 quarters equal to the variance of the observed data over the same period.

12I compute the marginal Likelihood using the Modified Harmonic Mean Estimator of Geweke (1999).
13The observable data after 2008Q4 is demeaned using a separate mean different from the estimation

sample, implying a structural break. Furthermore, the measurement error after 2008Q4 is adjusted to reflect
the changed data variance during that period.
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Figure 5: Model Predictions

(a) nt (b) 10-year Inflation Expectations

SPF Blue Chip & Livingston Survey HSM (with 95% CI)

Note: The panels displays the smoothed model states. The solid black line denotes the data; the
blue dashed line shows the median model prediction of the heuristic switching model along with 95%
confidence intervals in grey. The blue-shaded area denotes the out-of-sample forecast period.

As the left Panel of Figure 5 shows, the implied weight of the random walk forecasting

function – the gauge of expectations de-anchoring – is quite elevated in the early 1980s

before the Volcker driven re-anchoring was completed. Since the late 1980s the weight of

the random walk forecasting function has largely fluctuating around its equilibrium value of

50%, with spikes to the upward coinciding with the recessionary periods of the early 1990s

and 2000s. Interestingly, and contrary to the findings of Gáti (2023), the model does not

detect any significant de-anchoring following the global financial crisis. In recent years, the

model implies significant expectations de-anchoring beginning in 2021 as the result of large,

positive inflation forecast errors.

Furthermore, despite not being used as observable data in the estimation, the model-

implied long-run inflation expectations match the SPF forecasts quite well (see the right

panel of Figure 5). They follow the steady downward trend in the first half of the sample

and capture the relatively fast increase in the early 2020s. As a consequence, the sensitivity of

model-implied inflation forecasts to forecast errors is quite close to the sensitivity present in

the SPF forecasts (see Figure B.2). This illustrates the implicit mapping to the endogenous

gain approach of Carvalho et al. (2023), as the aggregate expectations under the heuristic

switching model exhibit a time-varying gain in the aggregate. Finally, the model-implied

IRF of long-term inflation expectations to a 1pp monetary policy shock matches the IRF

estimated on observed expectations rather well (see Figure C.1).

In general, neither the rational expectations model nor the heuristic switching model

captures all the high-frequency fluctuations of the observable data as they are attributed
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to measurement error. Instead, both models track the apparent underlying low-frequency

movements quite well (see Figure B.1). Importantly, the (time-varying) measurement er-

ror almost completely smoothes out the huge spikes in GDP growth during the Covid-19

pandemic.

4.3. The Effects of De-anchoring

The weight that the representative household puts on the random walk forecasting function

has a significant impact on the dynamics of the model. To illustrate this, Figure C.3 plots

the impulse response functions of output, inflation, and interest rates to a demand, supply,

and interest rate shock, respectively, for varying weights.14 The responses to all three shocks

clearly become more persistent the higher the degree of de-anchoring is. Furthermore, the

IRFs display an increasingly hump shaped pattern for higher degrees of de-anchoring, cul-

minating in an oscillating response for fully naive expectations. This is part of a broader

pattern: the variance of output and inflation of the heuristic switching model is weakly higher

than under rational expectations for all degrees of de-anchoring (and increasing therein, see

Figure C.4). Only the covariance between output and inflation can turn below its rational

expectations counterpart for very high degrees of de-anchoring as both variables increasingly

approach a random walk on their own.

Even more drastic, however, is the consequence of de-anchoring when the zero lower

bound is potentially binding (see Figure 6): A sequence of four consecutive σζ discount factor

shocks decreases demand enough to force interest rates to the zero lower bound and leads

to significant drops in output and inflation. Upon impact of the sqeuence of contractionary

shocks, the adaptive learning rule initially predicts the resulting contraction better than the

random walk forecast as the latter adjusts expectations only with a lag. As the shocks start

to level off, however, the adaptive forecasting function yields worse forecasts. This is the case

because, coming out of steady state with an active monetary policy response, it fails account

for the fact that the central bank is constrained in its ability to stabilise the economy. That

is, because the adaptive forecasting function starts with Ψ̄0 at its steady state value where

where monetary policy can mediate the effect of exogenous shocks, it fails to accurately

reflect the new environment the ZLB is binding. Therefore, the household (rightly) starts

to believe that the central bank is not able to stabilise inflation and thus adopts a random

walk forecasting function, reflecting this view. This ultimately pushes the economy into a

deflationary spiral.

Note that, for the first 4 periods, the HSM model yields a qualitatively similar responses

14That weight is held fixed for the horizon of the IRF
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Figure 6: De-anchoring at the ZLB

Rational Expectations HSM

Note: IRF to four consecutive standard deviation shocks to the discount factor
ζt. The dashed blue line shows the IRFs of the heuristic switching model (HSM);
the dotted red line shows the IRFs of the rational expectations model (RE).

as the rational expectations model (plotted in red).15 The key difference is that forecast

switching can generate endogenous, belief-driven deflationary spirals at the zero lower bound.

The rational expectations model, on the other hand, returns to the steady state once the

initial shocks dissipate and the central bank leaves the zero lower bound after 9 quarters.

The deflationary spiral is driven by the forecast switching behaviour. In fact, without

forecast switching (i.e. keeping n = 0.5 constant), the economy would very slowly return to

its pre-crisis level as the counterfactual analysis in Figure C.6 shows. Note that this scenario

occurs only when the central bank is constrained by the zero lower bound. If monetary

policy is unconstrained, the system remains stable even when the households relies only on

the representative forecasting function (i.e. n = 1). However, even when monetary policy

remains unconstrained and can prevent deflationary spirals, the economy still experiences

elevated volatility of output and inflation. Therefore, the potential downside posed by de-

anchoring is highly asymmetric with regard to the proximity to the ZLB, i.e. depends on

15The rational expectations IRF is computed using the parameters of the HSM posterior for better com-
parability.
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the level of the equilibrium interest rate.

5. Policy Implications

As discussed in the previous section, sequences of adverse shocks can push the economy to the

zero lower bound and lead to deflationary spirals by causing expectations to de-anchor. How

can monetary policy prevent this scenario? In this section, I first find the optimal Taylor rule

coefficient on inflation numerically. I then compare the optimal inflation targeting Taylor

rule with a Price Level Targeting rule, extending the analytical discussion of Section 3.2.

5.1. The Optimal Taylor Rule

To find the optimal Taylor rule coefficient on inflation ϕ∗
π, I simulate the model over 2,000

periods over a grid of Φπ ∈ [1, 50], holding all other parameters fixed at the posterior mean

of the heuristic switching model. The optimal Taylor rule coefficient is the grid point that

maximises the household’s utility (see Equation (1)) in a cross-section of 200 simulations.

Importantly, I simulate the non-linear model (see Section 2.1) instead of the linearised model

(see Section 3.1.1)16 to capture the non-linearities arising from the ZLB and from the poten-

tial of deflationary spirals.17 I consider two different equilibrium interest rate cases: First, I

set the discount factor β such that the equilibrium nominal interest rate is ∼ 6% (assuming

and inflation target of 2%), as was prevailing in the early 1980s according to the New York

Fed’s Holston-Laubach-Williams model. Second, I increase the discount rate such that the

equilibrium nominal interest rate decreases to ∼ 3%. Furthermore, in light of the results of

Carvalho et al. (2023) and Gáti (2023), I also consider a learning setup (denoted by ĤSM)

in which the forecast error of interest rate expectations are not used to evaluate the two

forecasting functions.18 This alternative setup allows the central bank to respond much

more aggressively to inflation because forecast errors on interest rates do not lead to further

de-anchoring by themselves.

Table 2 presents the optimal inflation response in the six different cases. In a high

16The non-linear model is solved by finding the labour and inflation policy functions that set the error
of the two inter-temporal conditions (3) & (10) to zero given the predetermined subjective expectations.
For tractability I maintain the assumption that households use linear predictors to forecast the deviations of
output and inflation from steady state but translate these expectations back into levels of output and inflation
to solve the non-linear model. I initialise the simulation at the fixed point of the adaptive forecasting function.
In the case of Price Level Targeting, the fixed point is derived under the assumption of no autocorrelation
in the shock processes. Therefore, I simulate the linearised model first to obtain the starting values for the
nonlinear simulation.

17For simplicity, I impose market clearing to derive the consumption forecast for the Euler equation (3).
18That is, Equation (21) only uses the squared forecast errors for inflation and output
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Table 2: Optimal Inflation Response - Simulation Evidence

R*=6% R*=3%

RE HSM ĤSM RE HSM ĤSM

ϕ∗
π 23.94 17.53 55.39 20.33 27.34 41.87

Note: This table shows the optimal inflation response in a standard Taylor
rule based on a simulation of the non-linear model in high nominal interest
rate environment (i.e. R∗ ∼ 6%) and under a low nominal interest rate
environment (i.e. R∗ ∼ 3%) for the Rational Expectations (RE), model
the Heuristic Switching Model (HSM), and the Heuristic Switching Model

without the evaluation of Interest Rate expectations (ĤSM).

interest rate environment, the optimal response to inflation is lower under the heuristic

switching model than under rational expectations. This is the case because the forecast errors

associated with aggressive monetary policy moves can lead to expectations de-anchoring,

which in turn leads to a higher volatility of output and inflation. When this channel is shut

down, the optimal interest rate response under the heuristic switching model becomes much

larger than under rational expectations, mirroring the results of Carvalho et al. (2023) and

Gáti (2023). That is, a central bank faces the trade-off between missing its inflation target,

which can give rise to expectations de-anchoring, and extreme interest rate adjustments

which, depending on the expectation formation, can equally give rise to expectations de-

anchoring. This non-linear relationship between the central bank’s responsiveness to inflation

and the degree of de-anchoring is illustrated in Figure 7. Conversely, in a lower interest rate

environment, the optimal inflation response is much higher than under rational expectations

regardless of the assumption regarding interest rate forecast errors. That is, a central bank

is willing to accept some degree of de-anchoring caused by extreme interest rate adjustments

to prevent the zero lower bound. This result illustrates the magnitude of the welfare loss of

de-anchoring at the zero lower bound and shows the importance of accounting for the ZLB

when discussing the consequences of de-anchoring.
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HSM ĤSM

Note: This figure displays the variance of weight nt put on the random walk
forecasting function for different degrees of responsiveness to inflation under an
Inflation Targeting framework away from the zero lower bound with and without
evaluation of interest rate forecast errors (dashed and dash-dotted lines, respec-
tively). The optimal inflation response under Rational Expectations, the Heuristic
Switching Model, and the Heuristic Switching Model without the evaluation of

Interest Rate expectations is denoted by ϕRE
π , ϕHSM

π , ϕĤSM
π , respectively.

Figure 7: Weight of Random Walk Forecast - Variance

5.2. Other Monetary Policy Frameworks

To supplement the analytical discussion of Price Level Targeting and to evaluate its perfor-

mance vis-à-vis Inflation Targeting, I simulate the model economy under the two different

policy regimes in the same two interest rate environments as above.

Table 3: Policy Framework Evaluation - Simulation Evidence

R∗ = 6% R∗ = 3%

IT PLT IT PLT

Welfare W -126.48 -125.97 -385.77 -416.88

[-192.42 -106.73] [-197.41 -105.46] [-566.56 -326.38] [-113,988.11 -335.19]

Risk of Defl. Spiral (%) 0.13 0.25 0.50 0.75

[0.00 0.47] [0.13 0.75] [0.13 1.38] [0.13 1.50]

Note: This table shows the simulation results under inflation targeting (IT) and price level targeting (PLT)
in a high nominal interest rate environment (i.e. R∗ ∼ 6%) and a low nominal interest rate environment
(i.e. R∗ ∼ 3%). Values in square brackets indicate 95% confidence bands, which are computed by taking
500 parameter draws from the draws of the MCMC sampler.

Table 3 presents the simulation results. In a high nominal interest rate world, Price
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Level Targeting leads to superior outcomes in terms of welfare relative to Inflation targeting.

This result switches in a world of low nominal interest rates. For both policy frameworks

it becomes significantly harder to stabilise the economy due to a potentially binding zero

lower bound. The constraint on interest rate setting leads to significantly more variation in

the degree of de-anchoring. These two factors, i.e. the zero lower bound and the associated

higher risk of de-anchoring, increase the volatility of output and inflation. The resulting

drop in welfare is much more pronounced under Price Level Targeting. To understand why

this is the case, consider a deflationary shock that pushes the economy to the ZLB. This

shock crates large forecast errors because it cannot be offset by the central bank under either

policy framework. These forecast errors are even larger under Price Level Targeting because

such a contractionary shock would normally be associated with an increase in inflation ex-

pectations generated by PLT to compensate for the price level gap. However, due to the

ZLB, this overshooting never materialises. Therefore, the agent increasingly believes to be

in a world with a passive central bank and accordingly adopts the random-walk forecasting

function. Finally, de-anchoring under Price Level Targeting increases the variance of output

and inflation much more than under Inflation targeting as Figure C.5 illustrates. Therefore,

the main driver of de-anchoring under Price Level Targeting is the failure to generate offset-

ting inflation which causes a rapid shift to a random walk forecasting function. This shift is

much more detrimental under Price Level Targeting than under Price Level Targeting.

These results hold under a wide range of parameter combinations. In fact, in a sub-

sample of 500 draws from the MCMC sampler, 81% of the parameter combinations imply

that Inflation Targeting outperforms Price Level Targeting in a low interest rate environment

(compared to 16% in a high interest rate environment). This is illustrated by the very

negative left tail of the distribution of simulated welfare outcomes shown in the square

brackets of Table 3.

The inability of Price Level Targeting to address the threat of expectations de-anchoring,

differs from the main result of Honkapohja and Mitra (2020) for two main reasons. First,

Honkapohja and Mitra (2020) calibrate a relatively small constant gain parameter of 0.005.

The gain under imperfect credibility, therefore, is much smaller than in my case, where

the random walk forecast of course implies a gain of one. The second main reason is that

their model does not feature supply shocks. The latter reason is part of a broader point:

Models of de-anchoring developed in a time of low nominal interest rate and relatively

subdued supply shocks (such as Honkapohja and Mitra (2020), Bianchi et al. (2021), and

an earlier version of this paper) generally favour alternatives to inflation targeting. This

recommendation changes, however, once supply shocks are taken into account, the proposed

policy alternatives can actually increase the risk of de-anchoring instead of reducing it (see
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Section E for a discussion of the asymmetric Taylor rule proposed by Bianchi et al. (2021)

in the face of endogenously anchored expectations).

In a final step of this simulation exercise, I confirm the optimal policy recommendation

of Gáti (2023): a central bank can improve welfare by reacting forcefully to movements in

long-term inflation expectations. This is shown by the welfare comparison between optimal

Inflation Targeting as well as an optimal Taylor rule with long-run inflation expectations as

an additional input in Table D.1. Responding to deviations of long-run inflation expecta-

tions from the inflation target allows the central bank to accommodate inflation fluctuations

when expectations are well-anchored, while implicitly conditioning its reaction function on

the degree of de-anchoring. Interestingly, this result arises in a model of 1 period ahead

expectations and does not require the infinite horizon formulation employed by Gáti (2023).

However, my simulated model suggests that the central bank needs to be much less aggressive

to achieve this goal than suggested by Gáti (2023).

6. Conclusion

Central bankers frequently voice concerns about the possibility of de-anchored inflation ex-

pectations, that is, the risk that short-term developments in inflation feed into long-term

inflation expectations. The contribution of this paper is to study the anchoring of inflation

expectations. For this purpose, I build a model in which a representative household weighs

his beliefs about whether or not the Taylor principle is satisfied. Given this belief, he either

forms expectations using a linear adaptive learning function or, when he doubts the central

bank’s commitment, using a random walk forecasting function. The time-varying weight

put on the naive forecasting heuristic determines the sensitivity of short- and long-run ex-

pectations to short-run conditions. The model has the same steady states as under rational

expectations but features complex dynamics away from the steady state that are non-linear

in the degree of anchoring: when expectations de-anchor, the volatility of output growth and

inflation increases. Monetary policy can prevent expectations de-anchoring from causing in-

flationary or deflationary spirals if the Taylor principle is satisfied and the zero lower bound

is not binding. At the zero lower bound, however, de-anchoring can lead to a self-fulfilling

deflationary spiral. Thus, the potential welfare loss of de-anchoring is asymmetric and bigger

in a low interest rate environment. I estimate the model using the non-linear particle filter

on U.S. data and use the estimated model to explore the implications for monetary policy, in

both a high and a low nominal interest rate environment. A striking result is that price level

targeting can be de-stabilising when employed near the zero lower bound, due to its more

restrictive stability requirements. However, in a high nominal interest rate environment, it
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successfully stabilises the economy.
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Appendix A. Derivation of the Fixed Point

Take the ODE

∂Ψ′

∂τ
= R−1Ext−2 (A [(1− n)Ψxt−1)] +Anzt−2 +Bwt +Cz̄)−Ψxt−2)

′ (54)

and work separately with a,b. Given that limt→∞Extxt′ = Σx = R = diag(1,Σw), it is

possible to write the ODE as

∂a′

∂τ
=(A [(1− n)a] + nAzt−2 +Cz̄)′ − a′ (55)

∂b′

∂τ
=Σw

−1Σwt−2,wt−1
(A(1− n)b+B)′ +Σ−1

w Σwt−2,zt−2
(An)′ − b′ (56)

As long as the ALM in Equation (28) is asymptotically stationary, i.e.

λ < 1 ∀λ ∈ Λ = {Λ : |I− nA−ΛI| = 0} (57)

we can write, holding (Ψ′, n) fixed, limt→∞Ezt as

zt(Ψ, n) =
(
(I− nA)−1 (A [(1− n)a] +Cz̄)

)′
(58)

so that the ODE for a becomes

∂a′

∂τ
=
(
A
[
(1− n)a+ n(I− nA)−1 (A(1− n)a+Cz̄)

]
+Cz̄

)′ − a′ (59)

yielding the fixed point
vec(ā′) = (I −A)−1vec ((Cz̄)′) (60)

Turning our attention to the ODE for b, we note that Σwt−2,wt−1 = FΣw = ΣwF (because

both are diagonal) and that Σwt−2,zt−2 = Σwt,zt is endogenously determined:

Σwt,zt
=E(wt)(A [(1− n)Ψxt)] +Anzt−1 +Bwt−1 +Cz̄)′ (61)

⇔ Σwt,zt
=Σwb

′(A(1− n))′ +ΣwB
′ +Σwt,zt−1

(An)′ (62)

where Σwt,zt−1 again is endogenous

Σwt,zt−1
=E(Fwt−1)(zt−1)

′ = FΣwt,zt
(63)

so that

vec(Σwt,zt
) =(I−An⊗ F)−1

(
A(1− n)⊗Σwvec(b

′) + vec(ΣwB
′)
)

(64)

Substituting this into into vec(∂b′/∂τ)

vec

(
∂b′

∂τ

)
=An⊗Σ−1

w (I−An⊗ F)−1
(
A(1− n)⊗Σwvec(b

′) + vec(ΣwB
′)
)

(65)

+A(1− n)⊗ Fvec(b′) + vec(FB′)− vec(b′) (66)
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which, as τ → 0, yields the fixed point

vec(b̄′) = (I −G1)
−1G2vec(B

′) (67)

where

G1 =A(1− n)⊗ F+An⊗Σw
−1 (I − nA⊗ F)−1A(1− n)⊗Σw (68)

G2 =I⊗ F+An⊗Σw
−1 (I − nA⊗ F)−1 I⊗Σw (69)

The mapping T from the perceived to the actual law of motion for the PLM coefficients for

a given n can therefore be characterised as

T (Ψ′, n) =

(
T (a′, n)

T (b′, n)

)
=

(
((I −An)−1A(1− n))

′

G1

)
(70)

A.1. Proof of Proposition I

Proof. A fixed point exists if the process zt is asymptotically stationary. Since the eigenvalues

of (nA) are increasing in n, a fixed point exists if the eigenvalues of A lie within the unit

circle. Bullard and Mitra (2002) show that a necessary and sufficient condition for the

eigenvalues of A to lie within the unit circle for a bivariate Taylor rule is

κ (ϕπ − 1) + (1− β)ϕy > 0 (71)

Strict inflation targeting is the limit case with ϕy = 0, thus reducing the requirement to

ϕπ > 1 (72)

i.e. the standard Taylor principle.

A.2. Proof of Proposition II

Proof. I guess that the fixed point of the mapping T is a steady state, , i.e. z∗ = ā =

(1−β
κ
π̄, π̄)′. In the absence of structural shocks and given zt = zt−1, neither forecast heuristic

makes prediction errors so that nt = n = 0.5 and the system becomes

y∗ = (1− n)y∗ + ny∗ − 1

σ
(π̄ + ϕπ(π

∗ − π̄)− (1− n)π∗ − nπ∗) (73)

π∗ = β[(1− n)π̄ + nπ∗] + κy∗ (74)

It is clear that π∗ = π̄ and y∗ = 1−β
κ
π̄ is a solution, thus confirming the initial guess. This

is the case if the weight of the random walk forecast is fixed at any value nt = n ∈ (0, 1).

However, due to the decay of past prediction errors and the forecast selection mechanism,

only nt = n∗ = 0.5 can be a steady state.
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A.3. Proof of Proposition III

Proof. When all households are adaptive learners (i.e. nt = 0), DTa(a
′, n) reduces to [A].

Given that the eigenvalues ofA are smaller than one in absolute value, the eigenvalues of [A−
I] will be negative since we subtract 1 from each of the eigenvalues ofA. Similarly, DTb(b

′, n)

reduces to [A ⊗ F], so that the eigenvalues of [A ⊗ F − I] will be negative as well. When

all households are naive forecasters (i.e. nt = 1), both DTa(a
′, n) and DTb(b

′, n) reduce

to zero so that the associated eigenvalues are of course −1. Any combination in between

for n ∈ (0, 1) is a non-linear combination of the two preceding cases whose eigenvalues are

decreasing in n and therefore still features negative eigenvalues, as Figure 2 illustrates.

A.4. Proof of Proposition IV

Proof. The eigenvalues of Ã are given by

λ1,2 =
1

2

(
1 + β +

κ

σ
±
√(

1 + β +
κ

σ

)2
− 4β

)
(75)

which implies for all positive values of β, κ, and σ that |λ1| < 1 and λ2 > 1. Since the

eigenvalues of nÃ are increasing in n, there exists n̄ = 2

(1+β+κ
σ
+
√

(1+β+κ
σ
)2−4β)

∈ (0, 1) such

that only for n < n̄ all eigenvalues of nÃ fall within the unit circle, the process zt is

asymptotically stationary, and the mapping T̃ has a fixed point. For n ≥ n̄ the process is

not stationary and no fixed point exists.

A.5. Proof of Proposition V

Proof. I again guess that z̃∗ = ˜̄a = (0, 0)′. In the absence of structural shocks and given

zt = zt−1, neither forecast heuristic makes prediction errors so that nt = n = 0.5 and the

system becomes

ỹ = (1− n)ỹ + ntỹ −
1

σ
(−((1− n)π̃ + nπ̃)) (76)

π̃ = β((1− n)π̃ + nπ̃) + κỹ (77)

which is solved by π̃∗ = ỹ∗ = 0, confirming the initial guess.

A.6. Proof of Proposition VI

Proof. First, I assume that n̄ < 0.5. In this case the steady state with n∗ = 0.5 cannot be

stable because the process zt is non-stationary and ãt will never converge to any fixed point
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˜̄a = z∗.

Second, I assume that n̄ > 0.5 and consider the two extreme cases of nt: when all

households are adaptive learners (i.e. nt = 0), DT̃a(a
′, n) reduces to [Ã]. Given that one

eigenvalue of Ã is bigger than one, not all eigenvalues of [Ã − I] will be negative. The

magnitude of eigenvalues of DT̃b(b
′, n) on the other hand depends on the correlation matrix

F and might be bigger or smaller than one in absolute value. When all households are naive

forecasters (i.e. nt = 1), both DT̃a(a
′, n) and DT̃b(b

′, n) reduce to zero so that the associated

eigenvalues are of course −1. Since the relevant eigenvalues switch signs I need to consider

the steady state case n = 0.5 explicitly. In that case, the mapping becomes:

DT̃a(a
′, 0.5) =

[
(I− 1/2Ã)−11/2Ã

]
= (2A−1 − I)−1 (78)

E-stability requires that

eig((2Ã−1 − I)−1 − I) < 0 (79)

Where eig(A) denotes the vector of eigenvalues λ associated with any matrix A. The above

is equivalent to

⇔ eig((2Ã−1 − I)−1)− 1 < 0 (80)

⇔ 1⊘ eig((2Ã−1 − I))− 1 < 0 (81)

where ⊘ denotes the Hadamard division, i.e. elementwise division. Note further

⇔ 1⊘ (eig(2Ã−1)− 1)− 1 < 0 (82)

⇔ 1⊘ (2⊘ eig(Ã)− 1)− 1 < 0 (83)

⇔ eig(Ã)⊘ (2− eig(Ã))− 1 < 0 (84)

however, since one of the eigenvalues of Ã is larger than one, this condition cannot be

satisfied and steady state is not E-stable.

A.7. Proof of Proposition VII

Proof. I guess that z∗ = ā = (1−β
κ
π̄, π̄, 0)′ (i.e. the rational expectations steady state) is a

steady state. In the absence of structural shocks and given that zt = zt−1, neither forecast

heuristic makes prediction errors so that nt = n = 0.5 and the system becomes

y∗ = (1− n)y∗ + (1− n)cy,pp̂
∗ + ny∗ − 1

σ
(π̄ + ϕπ(πt − π̄ + p̂∗)− (1− n)π∗ − (1− n)cπ,pp̂

∗ − nπ∗)

(85)
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π∗ = β[(1− n)π∗ + (1− n)cπ,pp̂
∗ + nπ∗] + κy∗ (86)

p̂∗ = π∗ − π̄ + p̂∗ (87)

It is clear that π∗ = π̄, y∗ = 1−β
κ
π̄, and p̂∗ = 0 is a solution, thus confirming the initial

guess. This is the case even if the weight of the random walk forecast is fixed at any value

nt = n < n̄. However, due to the decay of past prediction errors and the forecast selection

mechanism, only nt = n∗ = 0.5 can be a steady state. However, if n̄ ≤ 0.5, there exists no

fixed point ˜̄a so that the steady state does not exist.

A.8. Proof of Proposition VII

Proof. Suppose there exists a steady state at the zero lower bound where p̂t = p̂t−1 = p̂∗. In

that case by the law of motion for p̂t it must be that πt = π̄. However, a steady state with

positive inflation and a constant price level gap is only possible if p̂∗ = 0, i.e. the steady

state away from the ZLB. Therefore, there is no zero lower bound steady state under price

level targeting.
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Appendix B. Estimation Results

(a) GDP growth (b) Inflation

(c) (Shadow) Federal Funds Rate (d) Et(yt+1)

(e) Et(πt+1) (f) nt

Data Rational Expectations HSM (with95% CI)

Note: The panels displays the smoothed model states. The solid black line denotes the data; the
blue dashed line shows the median model prediction of the heuristic switching model along with 95%
confidence intervals in grey; the red dotted line depicts the median model prediction under rational
expectations (RE). The blue-shaded area denotes the out-of-sample forecast period.

Figure B.1: Model Predictions
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SPF HSM (with 95% CI)

Note: This figure show the estimated time-varying sensitivity of smoothed long-run inflation
expectations to inflation surprises. The blue dashed line depict the time-varying sensitivity of
model-implied inflation expectations with 95% credible intervals shaded in grey. The black solid
line depicts the time-varying sensitivity of median observed inflation expectations from the SPF.
The blue-shaded area denotes the out-of-sample forecast period.

Figure B.2: Sensitivity of Implied Expectations to Inflation Surprises

Appendix C. Model Dynamics

C.1. Long-run Inflation Expectations & Monetary Policy
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Estimated IRF (with 95% CI)

Model IRF

Note: This figure plots the estimated IRF of 10y inflation expectations to a 1pp mon-
etary policy shock along with the equivalent model IRF. The data IRF is estimated
using a local projection on a sample from 1990Q1:2007Q4 and uses Romer and Romer
(2004) shocks to identify exogenous movements in monetary policy, which are used to
instrument the 1y Treasury Rate. The model further includes lagged values of real
GDP, CPI, the 1y Treasury Rate, and the dependent variable. Standard errors are
heteroskedasticity and autocorrelation consistent with 12 lags. IRF is robust to 1)
including the monetary policy shock directly instead of using it as an instrument; 2)
using high frequency identified shocks (Gürkaynak et al., 2005).

Figure C.1: IRF of 10y Inflation Expectations to a 1pp Monetary Policy Shock
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C.2. Forecast Errors

Angeletos et al. (2020) document two stylised facts of aggregate expectations: They initially

under-react but later over-shoot the actual outcomes. I test whether my model of expectation

formation fits these facts. I estimate the impulse response functions of average 1q ahead

inflation forecast errors (i.e. πt+1− Êtπt+1) to a monetary policy shock. The left (right) panel

of Figure C.2 shows the IRF of the forecast error after a positive (negative) monetary policy

shock that decreases (increases) inflation. In both cases, we see an initial under-reaction

of expectations. That is, after a positive (negative) monetary policy shock,the household

initially expects higher (lower) inflation than eventually realises. However, after 5 periods,

the forecast errors flip signs, i.e. they over-react. Thus, my model with heuristic switching

forecasts fits the stylised facts of Angeletos et al. (2020). As a comparison, I also plot the

forecast errors of the model under the assumption that the representative household puts no

weight on the random walk forecasting function at all (i.e. nt = 0∀t). In this case forecast

errors are negative upon the impact but quickly return to zero, thus not corresponding to

the the findings of Angeletos et al. (2020).

Figure C.2: IRF of Forecast Errors

Forecast Switching & Learning
No Forecast Switching (i.e. n = 0)

Note: This figure plots the IRF of the average inflation forecast errors to positive (right) and negative
(left) 1pp monetary policy shock which occurs in period 1. The solid blue line depicts the forecast
errors of the heuristic switching model, whereas the dotted blue line depicts the counterfactual forecast
errors if the model contained adaptive learners only.
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C.3. Model Moments

Figure C.3: Impulse Response Functions for various Degrees of De-anchoring

(a) Demand Shock

(b) Supply Shock

(c) Monetary Policy Shock

n = 0 n = 1/3 n = 2/3 n = 1
Note: This figure plots the IRF of output (left), inflation (middle), and interest rates (right) to
a demand (upper panel), supply (middle panel), and monetary policy shock (lower panel) for
different weights put on the random walk forecasting function.
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Figure C.4: Model Variances & Covariance

Note: This figure plots the variance of output (left), the variance of inflation (middle), and
the covariance between the two (right) for different weights of the naive forecasting function.

C.4. Model Moments under Price Level Targeting

Figure C.5: Model Variances & Covariance under Price Level Targeting

Inflation Targeting Price Level Targeting
Note: This figure plots the variance of output (left), the variance of inflation (middle),
and the covariance between the two (right) for different weights of the naive forecasting
function und Inflation Targeting (dashed) and Price Level Targeting (dotted).
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C.5. Counterfactual IRFs

Figure C.6: Counterfactual IRF Shutting Down one Updating Mechanism at a Time

Learning & Forecast Switching
No Forecast Switching

No Learning
No Learning, no Forecast Switching

Note: This figure plots the IRF of output (left) and inflation (right) to four consecutive σζ shocks
to the discount factor under different assumptions about the expectation formation. The solid
blue line shows the response of the full model (i.e. the same response as in Figure 6); the dashed
lined shows the IRF of the model with a constant weight put on the random walk forecast (i.e.
n = 0); the dotted lined shows the IRF of the model with a constant weight put on the random
walk forecast (i.e. n = 0.5) and no updating of the adaptive forecasting function (i.e. Ψt = Ψ).
The dash-dotted lined shows the IRF of the model with a time varying weight put on the random
walk forecast but no updating of the adaptive forecasting function (i.e. Ψt = Ψ).
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Appendix D. Extension: Responding to Long-term In-

flation Expectations

In this section I investigate the performance of a Taylor Rule that also reacts to long-term

inflation expectations, i.e. an implementation of the optimal policy rule by Gáti (2023).

rt = max [0, π̄ + ϕπ(Etπt+40 − π̄) + ϕπ(πt − π̄) + ϕyŷt]

That is, the central bank reacts to deviations of long-term inflation expectations from its

inflation target on top of its systematic response to output and inflation.

Table D.1: Policy Evaluation - Responding to Long-term Inflation Expectations

R∗ = 6% R∗ = 3%

IT IT + long-run Expectations IT IT + long-run Expectations

ϕ∗
π 17.53 16.53 27.34 14.62

Welfare W -62.77 -62.77 -261.1 -259.41

Note: This table shows the optimal inflation response in a standard Taylor rule as well as a Taylor rule
augmted with long-run inflation expectations based on a simulation of the non-linear model in high nominal
interest rate environment (i.e. R∗ ∼ 6%) and a low nominal interest rate environment (i.e. R∗ ∼ 3%).

The simulation results in Table D.1 show that a Taylor rule that also responds to long-run

inflation expectations can improve in welfare terms over Inflation Targeting. This difference

is particularly pronounced in a low interest rate environment.
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Appendix E. Extension: An Asymmetric Taylor Rule

In this section I investigate the performance of an asymmetric Taylor rule as in Bianchi et al.

(2021) as an alternative policy rule under endogenously anchored expectations.

rt = max
[
0, π̄ + 1πt<π̄ϕπ

(πt − π̄) + (1− 1πt<π̄)ϕ̄π(πt − π̄) + ϕyŷt

]
That is, the central bank reacts more forcefully to inflation below target than inflation above

target to address the asymmetric welfare loss implied expectations de-anchoring at the ZLB.

I evaluate the performance of this rule in the same way as in Section 5.

Table E.1: Policy Framework Evaluation - Simulation Evidence

R∗ = 6% R∗ = 3%

IT asym. IT PLT IT asym. IT PLT

Welfare W -126.48 -125.97 -126.59 -385.77 -416.88 -387.78

[-192.42 -106.73] [-197.41 -105.46] [-213.51 -95.54 ] [-566.56 -326.38] [-113,988.11 -335.19] [-566.46 -328.87]

ZLB Frequency (%) 4.69 3.25 5.75 30.75 25.38 24.38

[0.88 12.63] [1.97 12.03] [9.50 20.50] [14.50 37.31] [12.56 32.88] [13.63 37.56]

Risk of Defl. Spiral (%) 0.13 0.25 0.13 0.50 0.75 0.63

[0.00 0.47] [0.13 0.75] [ 7.06 13.63] [0.13 1.38] [0.13 1.50] [0.13 1.38]

Note: This table shows the simulation results under inflation targeting (IT) and price level targeting (PLT)
in a high nominal interest rate environment (i.e. R∗ ∼ 6%) and a low nominal interest rate environment
(i.e. R∗ ∼ 3%). Values in square brackets indicate 95% confidence bands, which are computed by taking
500 parameter draws from the draws of the MCMC sampler.

The simulation results in Table E.1 show that an asymmetric Taylor rule leads to very

similar but slightly slower Welfare as symmetric Inflation Targeting in both high and low

nominal interest rate environments. The reason is that, in the presence of supply shocks, the

asymmetric response to inflation actually worsens the trade-off between output and inflation:

in response to a positive cost-push shock that increases inflation and reduces output, the

asymmetric policy rule becomes even more accommodative. However, in response to a

positive cost push shock, less accommadative policy reduces the benefits in terms of higher

growth
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