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Abstract

Bank stress tests, regularly conducted to ensure stable lending, constitute a de facto

constraint on balance sheets: equity must be sufficient to maintain current lending

also in the future, even after absorbing severe loan losses. We study the effects of such

forward looking constraints in a representative bank model. More severe-stress test

scenarios lead to lower dividends, higher equity levels, and universally lower, albeit less

volatile, lending. We calibrate our model to large U.S. banks, subject to Federal Reserve

stress tests, and compute the optimal, state-dependent severity of stress tests and

implied capital buffers (up to 6% during normal times). Finally, we complement stress

tests with three macro-prudential policies: the Covid-19 dividend ban, the counter-

cyclical capital buffer (CCyB), and the proposed dividend prudential target (DPT).

We find that combing stress tests with a dividend ban or DPT improves supervisor

welfare equally. Due to its discontinuous nature, however, relaxing the CCyB falls

short.

JEL Classification: E61, G18, G21, G32
Keywords: bank stress-tests, forward-looking equity constraints, optimal lending, micro-
versus macro-prudential policy
Declarations of Interest: none

⭐
We thank Klaus Adam, Thorsten Beck, Giacomo Calzolari, Edouard Challe, Michael Koetter, Iman van
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1. Introduction

The financial crisis of 2008-09 has highlighted how crucial bank health is for economic sta-

bility and growth. To promote a safe and sound financial system going forward, supervisory

authorities around the world have since introduced a wide range of new regulatory mea-

sures. As part of this policy package, the Federal Reserve (Fed), the European Central Bank

(ECB), and many other authorities have begun to subject banks to regular, usually annual

stress tests. The objective of regular bank stress tests is to ensure that banks are sufficiently

capitalized to maintain their current lending activities even under severely adverse macroe-

conomic conditions in the future.
1

In the U.S., banks found to be insufficiently capitalized in

a hypothetical downturn are consequently restricted in their dividend payments: depending

on the severity of violation, an increasing amount of net-income must be retained to boost

equity levels.
2

This regulatory pressure on dividend payments clashes with the banks’ apparent objec-

tive to generate stable dividends that compensate shareholders for their investments (Koussis

and Makrominas, 2019; Larkin et al., 2017).
3

These dividends are paid from both accumu-

lated equity and returns on assets that are financed via equity capital and debt. To keep

dividends smooth across the business cycle, banks deplete capital reserves when facing nega-

tive earning shocks (see Figure 1). Unregulated, simultaneously maintaining stable dividend

levels and minimum capital ratio requirements may lead to asset shrinkage during crisis pe-

riods. Thus, intuitively, supervisory restrictions on dividend payments via stress tests seem

warranted to maintain equity capital and thereby to ensure lending to viable firms.

This argument, however, ignores how banks might change their behavior in anticipation

of stress-test constrained dividend payments. To the banks’ risk-averse shareholders, a safe

payment today is worth more than an expected equal amount tomorrow that is subject

to uncertainty. To pass the stress tests, banks therefore may avoid cutting dividends and

instead reduce lending levels. Hence, one must account for the bank’s margin of adjustment

when evaluating the efficiency of stress tests. Thus far, the existing literature on stress tests

provides little insights on ex ante dividend and lending choices by stress-tested banks, as

it focuses mainly on the announcement effect of bank stress-test results and the subsequent

immediate stock-price responses (Beck et al., 2020; Goldstein and Leitner, 2018a; Sahin et al.,

1
Thus, stress tests extend the existing macro-prudential framework by going beyond point-in-time-

estimates.
2
A detailed description of the U.S. regulatory framework can be found in Appendix A.

3
There is no shortage of potential explanations for banks’ dividend smoothing policies, ranging from

investor interests to managerial pay-out schemes directly linked to dividend stability (Lambrecht and Myers,
2012; Wu, 2018). In this paper we do not take a stand on the cause of this behaviour but rather take it as
a given bank objective.
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Figure 1: Cumulative Growth of BHC Earnings and Dividends (2007=100)

Note: Sample includes all banks that were registered as Bank Holding Companies
(BHCs) in 2007 and were at any subsequent point subject to the stress tests of
the Comprehensive Capital Analysis and Review (CCAR) regulatory framework.

2020).

Research Agenda In this paper, we compute the optimal tightness of a forward-

looking stress-test constraint, endogenizing its effect on banks’ dividend, equity, and lending

policies. For this, we build a partial equilibrium framework that characterizes these three

bank choices, given different return realizations and varying tightness of the stress-test con-

straint. We then derive the optimal tightness of the stress-test constraint for a supervisor

who seeks to maximize lending levels while avoiding lending volatility. For this derivation

we partially rely on a calibration of our model for a quantitatively meaningful discussion.

Finally, we investigate how stress tests perform in unison with other policies, such as the

Covid-19 dividend ban, the countercyclical capital buffer, and the dividend prudential tar-

get by Muñoz (2020) (banks must pay a punishment fee when dividends deviate from a

regulatory target).

Theoretical Framework To illustrate the effects of a stress-test constraint on

bank balance sheet choices, we propose a three-period, partial equilibrium framework. The

model is populated by a supervisor with mean-variance welfare over bank lending and a

representative investor with mean-variance preferences over dividends received from invest-

ments in said bank loans.
4

The objective of the supervisor is, thus, in conflict with objective

of the investor: while the investor prefers high and stable dividends, the supervisor prefers

4
Assuming mean-variance preferences introduces the above described bank preference for smooth divi-

dends. Lambrecht and Myers (2012) provide a micro-foundation for such an objective function.
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high and stable lending.

The environment is characterized by a single source of uncertainty: loan returns evolve

over all three periods following an AR(1) process. This ensures that the supervisor is un-

certain over next period’s bank lending when designing stress tests and, subsequently, the

bank is uncertain over loan returns when investing the next period. The parameter space

additionally contains an initial bank equity endowment, an interest rate on bank deposits,

and an exogenously given minimum equity-to-loan constraint. As our key novelty in this

paper, we model the stress test as a forward-looking constraint of the bank’s balance sheet

choices: The bank’s retained equity must be sufficient to absorb (simulated) severely adverse

losses from the chosen lending levels without violating the minimum equity-to-loan ratio. It

is, thus, similar to a minimum equity-to-loan ratio reflecting that the frequency with which

stress tests are performed does not allow banks to temporarily adjust the balance sheet

simply for the purpose of passing the stress test.

The model evolves as follows. In period 0, an initial loan return state realizes and the

representative investor is endowed with the equity holding in the bank. Observing both,

the supervisor decides on the tightness of the forward looking stress-test constraint with the

objective to maximize welfare as a function of next period’s lending. In period 1, the bank

observes the initial equity and an evolved loan return state. With the objective to maximize

the shareholder’s total expected dividends, the bank first decides how much equity to retain

versus to pay out as period 1 dividends. The retained equity and additional external debt

are used to invest in risky loans. Here, the degree of debt financing of loans is constrained

by both the stress-test and the minimum equity-to-loan ratio. In period 2, a further evolved

loan return rate realizes and, together with last period’s equity, lending, and debt choices,

determines period 2 dividends. After paying out such to the investor, the bank ceases to

exist.

Bank Choices First, we show that any meaningful stress-test scenario results

in a de facto increased minimum equity-to-asset ratio (capital buffer). Hence, the forward

looking stress-test constraint always binds before the minimum equity-to-loan constraint.

Moreover, the bank always lends as much as the stress-test constraint allows, given the

level of optimal equity. The optimal equity follows a step function in return states: in bad

return states no equity is retained as loans are very risky and investments not profitable; in

medium states a portion of equity is retained for risky investments and a portion is paid out

as dividend; only in high return states all inherited equity is retained to be fully invested in

loans. Performing comparative statics over the stress-test constraint tightness (the severity of

the adverse scenario) highlights the core supervisory trade-off: an increase in tightness leads

to higher retained equity in (almost) all states of the world, but always reduces lending levels.

3



At the same time, however, a tighter stress-test constraint leads to less volatile lending.

Optimal Tightness A fully analytical expression of the optimal stress-test tight-

ness that would navigate this trade-off is unfortunately not available due to the underlying

stochastic process together with the kinks in optimal lending and equity policies. To nev-

ertheless provide a quantitative estimate, we calibrate the model using balance sheet data

of U.S. bank holding companies that are subject to the stress tests implemented by the

Comprehensive Capital Analysis and Review (CCAR) regulatory framework.
5

We then nu-

merically derive the ex-ante optimal tightness of the stress-test constraint that maximizes

the supervisor’s mean-variance preferences over expected lending. We find that the optimal

tightness typically leads to additional capital buffers of up to 6%, depending on the super-

visor’s aversion to lending volatility: a supervisor more (less) concerned about the volatility

than the level of lending imposes a tighter (looser) stress-test scenario. Furthermore, in a

higher (lower) initial return state a supervisor imposes a even looser (stricter) stress-test

scenario. This numerical result closely matches the Federal Reserves’ recently announced

stress-test buffers for 2021 which are reported to lie between 2.5% to 7.5% (Federal Reserve

Board, 2021), indicating that we are able to capture well the magnitude of bank balance

sheet choices under stress tests.

Sensitivity We then perform two sensitivity analyses to investigate the robust-

ness of our model assumptions. First, we show that it would be optimal for large U.S. banks

to violate stress tests in high return states as long as there is no cost associated with this

violation. We can, thus, rule out the common concern of strategic violation of the weakest

banks. Furthermore, we show that a supervisor would have to put extraordinarily large

weight on the investor’s welfare for it to make a quantitatively meaningful difference for the

optimal stress-test design.

Policy Complements In a final step, we utilize our model to evaluate the joint

ability of stress tests and several macro-prudential policies to maintaining stable lending.

First, we investigate how a blanket dividend ban, as many supervisory agencies either in-

troduced or contemplated at the beginning of the Covid-19 pandemic, impacts the lending

of stress-tested banks. Here, we find that a ban successfully increases lending in all states,

even though banks refrain from using as much debt financing as the stress-test constraint

allows. At the same time the lending volatility is lower under a ban, leading to overall super-

visory welfare improvements. Next, we show that relaxing a counter-cyclical capital buffer

(CCyB) only marginally increases lending in bad states. Thus, the CCyB activation is less

effective than the dividend ban and, when introduced on top of the ban, the CCyB has no

5
See Appendix A for a detailed description of the regulatory environment.
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further effects.
6

Due to its inherent discontinuity, the CCyB further increases the variance

of lending, leading to an overall welfare reduction in comparison to stand-alone stress tests.

Finally, we study the proposed dividend prudential target (DPT) of Muñoz (2020): Here, the

banks must pay a fine for deviations from a state-dependent dividend target that decreases

in return states. It is, thus, a smoother alternative to an outright ban. While it substan-

tially reduces lending volatility, this comes at a high cost of reduced lending in good states.

Overall, these two effects cancel out and, surprisingly, we find the DPT and the dividend

ban to be equally welfare improving when introduced on top of stress tests. However, the

welfare gains of a dividend ban for the supervisor are borne by the bank’s shareholders so

that the dividend prudential target would perform better in welfare terms once bank owner

welfare is taken into account. When considering the investors welfare under DPT as well,

we, thus, validate that the findings of Ampudia et al. (2022) also hold when accounting for

the micro-prudential stress-test constraint.

Literature To the best of our knowledge, we are the first to explicitly model

the forward looking stress-test constraint and, thus, theoretically study its impact on banks’

joined decision over lending, equity, and dividend payments. For this purpose, we extend

the two-period model by Gollier et al. (1997), in which a risk-averse decision maker chooses

how much to invest in a risky and in a risk-free asset, respectively. All consumption takes

place after returns have realized. We slightly deviate from this timing and ask how much a

risk-averse bank shareholder would consume as dividends today (risk-free) versus how much

to invest in loans for consumption tomorrow (risky). Further, we add an initial period 0, in

which a risk averse supervisor determines the stress-test scenarios constraining such choice,

but abstract from the possibility of bank default as originally studied in Gollier et al. (1997).

To characterize our bank problem in this setting, we borrow several elements from

the dynamic banking literature. For our bank objective function (mean-variance utility in

dividends), we rely on Lambrecht and Myers (2012), who provide a micro-foundation for the

observed dividend smoothing behavior of banks. They show that agency frictions between

managers and shareholders lead to a risk-averse bank objective, even when shareholders are

initially risk-neutral and well-diversified. Further, we extend the uncertainty of the asset to

span all three periods by utilizing the AR(1) process describing loan returns in Bolton et al.

(2020). Bolton et al. (2020) study the impact of deposit changes in an environment where

banks are price-takers on the asset side. Similar to their model, our representative bank is,

thus, subject to market uncertainty. Further, assuming an AR(1) allows us to extend the

uncertainty to the supervisor when determining the stress-test tightness. The result is an

6
Here, we are thus able to provide an explanation for the current policy puzzle of unused CCyB buffers

during the Covid-19 crisis (FSB, 2021).
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easily extendable model that not only highlights the balance sheet effects of stress tests, but

allows us to (numerically) compute the optimal scenario tightness.

By characterizing the optimal tightness of a forward-looking stress-test constraint, our

paper primarily contributes to the scarce theoretical literature on optimal stress-test design.

Complementary papers, such as those by Bouvard et al. (2015) and Goldstein and Leitner

(2018b), explore the time-inconsistencies between ex ante strict stress-test scenarios and ex

post lenience in application. Perhaps most closely related to ours is the paper by Orlov

et al. (2021), who study the ex ante optimal macro-prudential stress test — applied to the

whole banking system — and relaxed individual bank stringency ex post. Further related

is also a study by Shapiro and Zeng (2019), who show how banks optimally risk-adjust

their portfolio in response to stress tests with uncertain supervisor lenience. However, these

papers typically hold dividends, equity, and debt levels fixed and instead study a choice at

the intensive margin between a more and a less risky asset.

We complement these studies by endogenizing the banks’ balance sheet size, abstracting

from portfolio risk-adjustments at the intensive margin. Further, we abstract from regula-

tory uncertainty over lenience. Instead, our trade-off is driven by the clash between objective

functions: while the supervisor prefers stable lending, the bank prefers to pay stable divi-

dends. By calibrating our model, we are able to obtain optimal stress test implied equity

buffers that are numerically close to those applied by the Fed in 2021 (Federal Reserve Board,

2021). Going one step further, we extend our model to include additional macro-prudential

policies (dividend ban, CCyB and DPT). We study the complementary effect of these poli-

cies and stress tests in stabilizing lending, both in absolute and relative terms. We are,

thus, able to contribute to similar welfare analyses by e.g Ampudia et al. (2022) through the

combination of macro-prudential and micro-prudential policies.

On the empirical side, there exist a few papers, such as e.g. Cappelletti et al. (2019) and

Cornett et al. (2020), that study the effect of stress tests on bank balance sheets. Here, we

would like to highlight the recent study by Garćıa and Steele (2022) that directly explore the

CCAR stress tests, used to calibrate our model, in a regression discontinuity design. They

find that stress tests leads to asset shrinkage particularly in riskier loans in favor of less risky

loans. This finding is resounded in similar studies using U.S. loan-level data. As Acharya

et al. (2018), Cortés et al. (2020), and Doerr (2021) document, stress-tested banks reduce

credit supply, especially to risky borrowers. Finally, we would like to briefly mention the

relatively unrelated yet extensive literature that studies the information revealing mechanism

of stress tests and their immediate impact on stock prices (Bird et al., 2020; Morgan et al.,

2014; Petrella and Resti, 2013; Quijano, 2014).
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Overview The remainder of the paper is organized as follows. In Section 2, we

describe the baseline model environment and state the bank’s optimal dividend, equity, and

lending choices. In Section 3, we calibrate the model, quantify the marginal responses of

equity and lending to changes in the stress-test tightness, and finally numerically establish

the optimal stress-test tightness. Section 4.1 addresses the possibility for banks to voluntary

violate stress tests and consider the behavior of a supervisor who also takes into account the

welfare of the investor. In Section 5, we discuss several policy extensions, such as the Covid-

19 dividend ban, the CCyB, and the DPT. Section 6 concludes and puts the theoretical

and calibration exercise in perspective. The appendix contains a detailed description of the

regulatory framework and all proofs.

2. Theoretical Analysis

The following section contains the representative bank problem and is structured in the

three following sub-sections: Section 2.1 describes the baseline partial equilibrium framework

inspired by the dynamic banking models of Bolton et al. (2020) and Lambrecht and Myers

(2012), but modified to a three-period environment to allow for a tractable introduction

of bank stress tests;
7

Section 2.2 subsequently derives the lending and equity choices by a

stress-tested bank and, relying on this, Section 2.3 performs comparative statistics to study

the response of equity and lending to the introduction of a stress test.

2.1. Three-period Model

The model is populated by a representative risk-averse investor owning a bank, or a repre-

sentative bank for short, and a welfare-maximizing supervisor. Both agents live for three

periods, denoted with t = {0, 1, 2} respectively, and share a common discount factor β.
8

Each period t is characterized by the stochastic return on loans rl,t which follows an AR(1)

process (more below). In period t = 0, an initial bank equity endowment E0 > 0 and initial

7
We rely on the serially auto-correlated loan returns from Bolton et al. (2020), but abstract from bank

default and investments in risk-free bonds for tractability, as these play a subordinate role in a three-period
model, where the choice is only between consuming today versus tomorrow. Similarly to Lambrecht and
Myers (2012), we further assume that deposit rates are fixed and we rely on their Proposition 1 that provides
a micro-foundation for the bank objective function proposed here. Here, we take advantage of the fact that
normally distributed future loan returns simplify their exponential utility function to mean-variance utility.
We additionally include a supervisor constraining bank choices via stress tests.

8
We make this assumption for simplicity but it does not affect the model outcomes. As will be discussed

in more detail in Section 3.3, the supervisor has preferences only about the expected level and variance of
lending in period t = 1. Therefore, there is no intertemporal trade-off for the supervisor that is influenced
be the discount factor.
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return state rl,0 realize. Observing these, the supervisor decides on the optimal stress-test

tightness τ . In period t = 1, the representative bank observes an evolved loan return rl,1

and E0, and decides how much of the inherited equity to pay out as dividends versus to

retain for loan investments. Here, the additional deposit financing of loans is constrained

by both the stress test and a minimum equity-to-asset ratio requirement. In period t = 2, a

further evolved loan return state rl,2, together with inherited loan, deposit, and equity levels,

determines the final dividend payment by the bank to the investor.

t = 0 t = 1 t = 2

• Equity E0 and return state rl,0

realize

• Supervisor sets τ

• Return state rl,1 realizes

• Bank decides on dividends d1,

retained equity E1, loans L1 and

deposits D1

• Return state rl,2 realizes

• Dividends d2 are determined

given rl,2, E1, L1 and D1

Loan Returns The underlying uncertainty in our model stems from an AR(1)

process in loan returns spanning all three periods. The process is initialized at with an initial

return rl,0 that is public knowledge at t = 0. Each subsequent period t ∈ 1, 2 is characterized

by an evolved return rl,t that depends on a constant µl, past returns rl,t−1 multiplied by the

autocorrelation coefficient ρl and an iid shock εt, drawn from a standard-normal distribution,

that is amplified by volatility parameter σl:

rl,t = µl + ρlrl,t−1 + σlεt where εt ∼ N (0, 1), µl > 0, ρl ∈ (0, 1), σl > 0. (1)

The initial state rl,0 serves as the information set for the supervisor when setting the

stress-test constraint (see Section 3 below). The supervisor, thus, experiences uncertainty

over both rl,1 and rl,2. The representative bank takes actions in t = 1, when only uncertainty

about period-2 returns rl,2 remains. For ease of notation throughout the paper, we denote

the unconditional mean of the return process with µl:

E[rl,t] =µl + ρlE[rl,t−1] + σlE[εt], (2)

µl =µl + ρlµl, (3)

µl =
µl

1 − ρl
. (4)

The Investor There exists a representative investor who is hand-to-mouth and

subject to mean-variance utility u(⋅) from received time t dividends dt.
910

We denote the

9
This assumption is micro-founded by Lambrecht and Myers (2012), who show that payout smoothing

naturally arises when insiders are risk averse and/or subject to habit formation. Here, we rely on their result
from Proposition 1 and directly model an objective function over dividends rather than over managerial
rents subject to investor participation constraints.

10
Because the investor always maximizes expected utility given normally distributed returns, we directly

maximize mean-variance utility, whose solutions are exactly equal those given exponential utility and Taylor-
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resulting aversion to risk with γ, such that:

u(dt) = E[dt] −
γ

2
VAR[dt] (5)

The Bank’s Balance Sheet The investor dividends are financed through an

initial equity endowment E0 in a representative bank. At time t = 1, the bank observes E0,

a loan return state rl,1, and the two regulatory constraints (more below). Given these states,

the bank first decides how much initial dividends d1 to pay versus how much equity E1 to

retain.

d1 =E0 − E1 (6)

Subsequently, the bank additionally sources costly deposits D1, at the exogenous interest

rate rd < µl, to finance investments in the risky loans L1:

L1 =E1 +D1. (7)

In period t = 2, a new loan return rl,2 realizes, where we assume that the loan returns

follow an AR(1) process:

rl,2 = µl + ρlrl,1 + σlε2 where ε2 ∼ N (0, 1) (8)

Then the combined choices of equity E1, deposits D1, and lending L2 determine divi-

dends d2. Accounting for the underlying AR(1) process and the loan return state rl,1, this

implies:

d2 =rl,2L1 − rdD1 + E1 where d2 ∼ N ((µl + ρlrl,1)L1 − rdD1 + E1, L
2
1σ

2
l ) . (9)

The Supervisory Constraints The choices of E1, D1, and L1 are restricted

by two supervisory constraints: a minimum equity-to-asset ratio constraint and a stress-

test constraint. The first defines a minimum equity-to-asset ratio χ that effectively restricts

the bank’s debt financing of loans. Here, we assume that the minimum ratio χ is given

exogenously.
11

For the choices E1 and L1 this implies:

approximate those of all other concave (risk-averse) utility functions (Levy and Markowitz, 1979; Markowitz,
2014).

11
This follows the narrative that global minimum capital standards, such at the Basel III requirements,

are not quickly and easily adjustable by a national authority without severe costs. Furthermore, it allows us
to focus on the effect of the forward looking constraint.

9



E1

L1
≥ χ. (10)

The stress-test constraint is forward looking instead, and requires that the bank’s avail-

able equity at time t = 2 cannot drop below χ even under a severely adverse loan return

state realization rl,2. Here, the expected available equity is the sum of the retained equity

E1 and next period profits Π2(τ) simulated for stress-test scenario τ :

Π2(τ) =(µl − τσl)L1 − rdD1 where µl =
µl

1 − ρl
. (11)

Here, µl denotes the unconditional mean of the AR(1) process and τ defines the number

of standard deviations below µl that describe the adverse scenario of rl,2. As τ defines

the severity of the adverse scenario, we will refer to it as stress-test constraint tightness

throughout the paper. For now, tightness τ ≥ 0 is taken as given and can be interpreted as

a model parameter. In Section 3, we relax the latter assumption and explicitly determine

the optimal τ numerically. With the definition of Π2(τ) in mind, the stress-test constraint

thus takes the following shape:

E1 +Π2(τ)
L1

≥ χ. (12)

The Bank’s Optimization Problem The above described constraints com-

plete the bank optimization problem in period t = 1. For this, we denote the investor’s total

utility from d1 and d2 with U(d1, d2). The bank’s optimization problem is thus:

U(d1, d2) = max
E1, L1

d1 + β [E[d2] −
γ

2
VAR(d2)] , (13)

s.t.

d1 = E0 − E1, (14)

L1 = E1 +D1, (15)

d2 = rl,2L1 − rdD1 + E1 ∼ N ((µl + ρlrl,1)L1 − rdD1 + E1, σ
2
l L

2
1), (16)

E1 ≥ χL1, (17)

E1 +Π2(τ) ≥ χL1 where Π2(τ) = (µl − τσl)L1 − rdD1, (18)

L1 ≥ 0, (19)

E1 ∈ [0, E0]. (20)

Here, equations (14) - (16) are the bank’s balance sheet constraints, inequalities (17)

and (18) denote the two supervisory constraints on equity, and constraints (19) and (20) are

10



the feasibility constraints on lending and equity.
12

Parameter Restrictions For the AR(1) process on loan returns, we assume

that µl > 0, ρl ∈ (0, 1) and σl > 0. For the supervisory constraints, we assume χ ∈ (0, 1)
and τ ≥ 0. For the risk-aversion we assume that γ > 0. For the initial equity endowment,

we assume that E0 >> 0, reflecting that we are dealing with large banks. Finally, for the

deposit rate we assume that rd < µl and 1 + rd < 1/β, jointly ensuring that debt financing

of loans is desirable.
13

2.2. The Bank’s Optimal Choices

We now turn to solving the bank optimization, starting with simplifying the two supervisory

constraints: the minimum equity-to-asset ratio (17) and the stress-test constraint (18). First,

we use the budget constraint in (15) and the definition of Π2(τ) to rearrange the stress-test

constraint:

E1 + (µl − τσl)L1 − rd(L1 − E1) ≥χL1, (21)

E1 ≥
χ − µl + τσl + rd

1 + rd
L1. (22)

Comparing this to the minimum equity-to-asset ratio constraint in (17), it is easy to see

that, for sufficiently large τ , the stress-test constraint always binds first:

χ − µl + τσl + rd
1 + rd

≥χ, (23)

τ ≥
µ − rd(1 + χ)

σl
= τ̃ . (24)

And for τ below τ̃ , the minimum equity-to-asset ratio constraint binds first. In either

case, the second constraint is binding exclusively in states where the first one is binding too.

Lemma 1. There exists a stress-test tightness threshold τ̃ , such that :

(i) If τ < τ̃ , the minimum equity-to-asset ratio constraint always binds first.
(ii) If τ ≥ τ̃ , the stress-test constraint always binds first.

The results from Lemma 1 allow us to generalize the bank optimization problem to nest

both supervisory constraints in a single equity constraint:

12
Constraint (19) implies that the bank cannot short-sell loans. In (20), the lower bound implies that the

bank cannot debt-finance dividends and the upper bound rules out additional equity injections.
13

The latter implies that shareholders are less patient than depositors and thus have a preference for debt-
financing of loans. As Gollier et al. (1997) discuss, this is a necessary assumption for this type of banking
models and thus commonly found. The alternatives with 1/β = 1 + rd and 1/β < 1 + rd would respectively
imply that the Modigliani Miller theorem holds or that the bank exclusively equity-finances loans.
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E1 ≥ χ(τ)L1 where χ(τ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ τ < τ̃

χ−µl+τσl+rd
1+rd

τ ≥ τ̃
. (25)

Relying on this, we then derive the bank’s optimal equity, dividend, and lending choices

as a function of χ(τ). The proof is described in detail in Appendix B, but follows a few

very intuitive steps. First, it can be shown that, given the parameter assumptions, equity-

financing loans is never desirable. Thus, the revised minimum equity constraint is always

binding at the optimum. Denote the optimal loan level with L
∗
1 . Then, this implies:

L
∗
1 =

E1

χ(τ) . (26)

This result can be substituted into the bank optimization problem to simplify it further.

Temporarily ignoring the feasibility constraints on equity, equating the first-order-condition

with respect to retained equity with zero, yields the following optimal equity level E
∗
1 :

E
∗
1 =

χ(τ)
γσ2l

[µl + ρlrl,1 − rd − χ(τ) (
1

β
− 1 − rd)] . (27)

However, E1 is feasibility-constrained from below at zero and from above at E0. Inserting

these bounds in the above Equation (27) and rearranging allows us to derive two thresholds

rl and rl:

rl =
1
ρl

[rd − µl + χ(τ) (
1

β
− 1 − rd)] , (28)

rl =
1
ρl

[ γσ
2
l

χ(τ)E0 + rd − µl + χ(τ) (
1

β
− 1 − rd)] . (29)

Here, threshold rl denotes the return state rl,1 below which no equity is retained and

d
∗
1 = E0. rl denotes the return threshold above which equity is fully retained and E

∗
1 = E0.

With this, the optimal choices are fully characterized for a given χ(τ), and summarized in

Proposition 1.

Proposition 1. A given constraint tightness τ , equity endowment E0, and return state rl,1

imply the following optimal bank choices:

(i) If rl,1 ≤ rl all initial equity is paid out, such that:

d
∗
1 =E0, (30)

E
∗
1 =L

∗
1 = d

∗
2 = 0. (31)

12



(ii) If rl,1 ∈ (rl, rl), some equity is paid out and some retained, such that:

E
∗
1 =

χ(τ)
γσ2l

[µl + ρlrl,1 − rd − χ(τ) (
1

β
− 1 − rd)] , (32)

d
∗
1 =E0 − E

∗
1 , (33)

L
∗
1 =

E
∗
1

χ(τ) , (34)

d
∗
2 =

E
∗
1

χ(τ)(rl,2 − rd) + E
∗
1 (1 + rd). (35)

(iii) If rl,1 ≥ rl, the initial equity is fully retained, such that:

E
∗
1 =E0, (36)

d
∗
1 =0, (37)

L
∗
1 =

E0

χ(τ) , (38)

d
∗
2 =

E0

χ(τ)(rl,2 − rd) + E0(1 + rd). (39)

It is important to note that the kinks in the lending function are not just outliers of the

return distribution but are quantitatively important: For an initial equity level equal to the

optimal equity level at the unconditional mean of the return process (i.e. E0 = E
ss(τ)), the

full-retainment return level is exactly equal to the unconditional mean of the return process.

To see this, first define the steady state equity level for a given stress-test tightness τ ;

E
ss(τ) =χ(τ)

γσ2l
[µ̄l − rd − χ(τ) (

1

β
− 1 − rd)] , (40)

and substitute it into the full-retainment return level:

rl =
1
ρl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

γσ
2
l

χ(τ)
⎛
⎜
⎝
χ(τ)
γσ2l

[µ̄l − rd − χ(τ) (
1

β
− 1 − rd)]

⎞
⎟
⎠
+ rd − µl + χ(τ) (

1

β
− 1 − rd)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (41)

which simplifies to

rl =
1
ρl

(µ̄l − µl) = µ̄l. (42)

Therefore, the bank will retain all its initial equity for all return states equal to or larger

than the unconditional mean of the return process. The associated lending function will,

thus, be also flat for all return states above the unconditional mean. This discontinuity

prevents us from deriving a closed-form solution for the optimal stress-test tightness τ
∗

so

that we rely on a numerically solution in Section 3.3 instead.
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2.3. The Effect of Stress Tests

In this section, we analyze how E
∗
1 and L

∗
1 change when the supervisor decides to introduce

a stress-test constraint by raising τ above τ̃ . For this purpose, we introduce two additional

superscripts
e

and
s
, denoting the equilibrium outcomes under a binding minimum equity-

to-asset ratio and a binding stress-test constraint, respectively.

First it can be shown that raising τ implies a higher χ(τ) > χ, which consequently

results in a higher no-retainment state rl. We thus have that:

r
s
l,1 > r

e
l,1. (43)

An introduction of a τ above τ̃ also implies that the full-retainment state is reached

earlier:

rsl,1 < r
e
l,1. (44)

This implies that at the low end of the return distribution, a stress-test constraint

incentivizes banks to retain equity only in relatively better states. At the high end of

the return state distribution, full retainment is reached already at relatively worse states.

Complementing this, it can be shown that for all rl,1 above rl and below rl, the optimal

retained equity E
∗
1 increases linearly in rl,1 but with a steeper slope, the higher the τ :

∂E
∗
1

∂rl,1
=
χ(τ)
γσ2l

ρl
∂
2
E1

∂rl,1∂τ
=

ρl
(1 + rd)γσl

> 0. (45)

Therefore, there exists a return state r̃ ∈ (rel,1, rel,1), below (above) which a stress-test

constrained bank retains less (more) equity than if it was constrained by the minimum-equity

constraint only. Using Equation (27) we can characterize this threshold r̃ as:

r̃l =
1
ρl

[rd − µl + (χ (τ) + χ) ( 1

β
− 1 − rd)] , (46)

=r
s
l,1 +

χ
ρl

( 1

β
− 1 − rd) . (47)

Here, Equation (47) rearranges r̃l as a function of the no-retainment state, showing it

to be only marginally higher. Thus, in most return states (and definitely the positive states)

more equity is retained under stress tests. However, for very low return states, where loans

are a particularly unfavorable investment, the bank does not find it optimal to increase its

14



relative equity exposure to loans. Thus, it retains less than in the absence of stress tests.
14

Figure 2a below illustrates this effect of a stress-test constraint on retained equity.

Corollary 1. Raising τ above τ̃ leads to more retained equity in almost all states of the

world.

Figure 2: Minimum Equity-to-asset Ratio Versus Stress-test Constraint

(a) Retained Equity Levels

0 rl,1

E
∗
1

E0

r
e
l relr

s
l rsl

E0

χ(τ)

r̃l,1

(b) Lending Volume

0 rl,1

E
∗
1

E0

χ

r
e
l relr

s
l rsl

E0

χ(τ)

Stress-Test Constraint ( τ > τ̃)
Minimum Equity Constraint ( τ ≤ τ̃)

Figure 2b complements the comparison, by illustrating the effect of the stress-test con-

straint on lending. Here, we can see that the higher retained equity levels between r̃l,1 and

r
s
l,1 never translate into higher lending volumes. The extra equity is lower than the equity

level that would be required to maintain the same level of lending under the tighter equity

ratio constraint which is implied by the stress-test constraint. Thus:

L
∗,s
1 < L

∗,e
1 ∀rl,1 > r

e
l,1. (48)

Furthermore, the volatility of lending also decreases under the stress-test constraint,

given that equity retainment starts only at a relatively better state but the full-retainment

state is reached earlier.

Corollary 2. Raising τ above τ̃ implies strictly lower but less volatile lending.

14
This provides a micro-founded support for several supervisors’ decisions to pause regular bank stress

tests during the Covid19 crisis (Baudino, 2020).
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3. Calibration & Optimal Stress-test Tightness τ

We now turn to the supervisory choice of τ in period 0 and the resulting impact on lending

and equity levels. Since this analysis requires a realistic model calibration, we use balance

sheet data of stress-tested U.S. banks and discuss our model calibration in Section 3.1. We

then use the calibrated model to quantify the marginal effects of adjusting the stress-test

tightness τ on lending and equity in Section 3.2. In a final step, we compute the optimal

choice of τ in Section 3.3.

3.1. Model Calibration

To provide a quantitative estimate of the optimal τ , we calibrate our model with two sets of

parameters (see Table 1).

The first set of parameters (Panel A. of Table 1) consists of the discount factor, the

risk aversion parameter, and the minimum equity-to-asset ratio. We pick a discount factor

β equal to 0.99, which corresponds to an annualized real interest rate of 1%. We take the

risk aversion parameter from Eisfeldt et al. (2020) and set it to 4.37. Furthermore, we take

a minimum equity-to-asset ratio of 7% as given (see Appendix A).

The second set of parameters (Panel B. of Table 1) describes the loan return process as

well as the return on deposits. For these parameters we use balance sheet data of U.S. Bank

Holding Companies with more than $10bn in assets between 2009 - 2019 (i.e. banks subject

to CCAR stress tests) to calibrate the parameters of the loan return process as well as the

return on deposits.

To calibrate the return process, we follow De Nicolò et al. (2014) and estimate an

AR(1) process on the mean excess return on assets. We use the excess return over the

risk-free interest rate to make sure that return movements are not driven by movements

in the risk-free rate. We compute the excess return on assets as the ratio of the interest

and non-interest revenues to lagged assets (items bhcp4000 and bhck2170 respectively in the

FR Y–9C reports) minus the 1-year Treasury rate. We then add this excess return to our

implied (time-invariant) risk-free rate 1/β − 1 to arrive at the mean of the return process.

The calibrated return process has a mean of 1.02% with a standard deviation of 0.52% and

an autocorrelation of ρl = 0.62, which implies an unconditional mean return of 2.66%.

To calibrate the deposit rate rd, we again start by eliminating the movements of the risk-

free rate and first estimate the deposit spread. We compute the deposit spread as the mean

difference between the 1-year Treasury rate and the mean deposit rate, given by the ratio

of interest paid on deposits (the sum of items bhckhk03, bhckhk04, bhck6761, and bhck4172 )

to lagged deposits (the sum of items bhdm6631, bhdm6636, bhfn6631, bhfn6636 ). We then
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Table 1: Calibration

Description Parameter Value

A. Parameters assumed / obtained from literature

Discount Factor β 0.99

Risk Aversion γ 4.370

Minimum Equity-to-asset Ratio χ 0.07

B. Parameters estimated from data

Mean Return of Risky Asset (%) µl 1.02

(0.03)

AR(1) of Risky Asset ρl 0.62

(0.04)

SD of Risky Asset (%) σl 0.52

(0.03)

Lending Spread (%) 1/β − 1 − rd 0.39

(0.01)

Return on Deposits (%) rd 0.62

(0.01)

Note: Bootstrapped standard deviations reported in parenthesis.

subtract this deposit spread from our implied risk-free rate 1/β − 1 to arrive at the deposit

rate. Over our sample period, bank deposits yielded on average 0.39 percentage points less

than the 1-year Treasury rate, yielding a return on deposits of 0.62% for our implied risk-free

rate of 1%.

Alongside the calibrated parameters, Panel B. of Table 1 also reports the respective

bootstrapped standard deviations (in parenthesis). We use these estimates to bootstrap the

confidence intervals for the supervisory choice of τ
∗
.

3.2. Effect of Stress Tests on Equity and Lending

To illustrate the effect of stress tests, we use the calibrated model and plot the marginal

responses of equity and loan levels (in %) to a one unit increase in the tightness of the stress-

test constraint τ in Figure 3. It is clear that the effect of a higher stress-test constraint is

highly non-linear in the state of the business cycle, i.e. the return state.

Following an increase of the stress-test tightness τ , equity (left panel) is lower for very

bad states of the world due to an increased no-retainment threshold (see Equation 47).

However, for most of the return realizations below the unconditional mean return µl, equity
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Figure 3: Marginal Response of Equity and Lending to a Unit Increase in τ

(a) Marginal Response of Equity (%) (b) Marginal Response of Lending (%)

is higher following the increase of τ . For return realizations above µl the increase of τ does

not lead to higher equity retainment, since banks retain all of their equity either way.

Lending volumes (right panel) are affected by changes of both retained equity as well as

the minimum equity constraint in response to an increase of the stress-test tightness τ . For

all return states below the unconditional mean return µl, an increase in τ reduces lending

because the the increase in the minimum equity constraint offsets the increase in retained

equity. For all return states above the unconditional mean return µl, retained equity is

unchanged but the increased minimum equity constraint leads to lower lending. However,

this effect is marginal because a unit increase in τ increases the implied equity constrained

only by σl/1+rd.
This demonstrates that in all but very bad states of the world, the increase of τ can

weakly enhance the safety of banks, but this unequivocally comes at the cost of lower lending

levels, as the right panel shows. This reduction in lending, however, approaches zero as the

return realisations increase.

3.3. The Supervisory Choice of τ

We now investigate how a supervisor optimally sets the severity of simulated losses used

in the stress test (i.e. the number of standard deviationsτ below the mean return µ̄) with

the objective to ensure stable lending levels.
15

Here, Corollary 2 highlights the supervisory

trade-off between reduced but consequently less volatile lending. To capture this trade-off,

we assign the welfare weight ω ≥ 0 to the expected variance of optimal bank lending L
∗
1 ,

i.e. a parameter of supervisor risk aversion (we explore the implications of an alternative

supervisor welfare function in Section 4.2). Then, observing E0 and rl,0, the supervisor

15
Note that this supervisory objective is taken directly from the Federal Reserve Board (2020c).
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solves:

max
τ

E[L∗1 ∣ rl,0, E0] − ωVAR0[L∗1 ∣ rl,0, E0], (49)

s.t.

χ(τ) ∈ [χ, 1), (50)

where

rl,1 ≤ rl ∶ L
∗
1 = 0, (51)

rl,1 ∈ (rl, rl) ∶ L
∗
1 =

µl + ρlrl,1 − rd − χ(τ)(1/β − 1 − rd)
γσ2

l

, (52)

rl,1 ≥ rl ∶ L
∗
1 =

E0

χ(τ) . (53)

Equations (51) to (53) show that the supervisor anticipates a rectified normally dis-

tributed L
∗
1 with upper and lower bounds: (51) states that below rl, lending L

∗
1 is set to

zero; (52) implies that between rl and rl lending is normally distributed with N (µL1
, σ

2
L1

);
16

(53) states that above rl, lending is set to E0/χ(τ).
To identify the optimal stress-test tightness τ

∗
, we utilize our parameterization from

Section 3.1 and computationally maximize the supervisor’s welfare directly, subject to the

respective constraints. As argued previously, the fact that loans follow a two-sided rectified

distribution prevents us from deriving a closed-form expression for the optimal stress-test

tightness so that we solve this problem numerically. Since the results depend to a large

degree on the amount of initial equity E0, we first define the steady state level E
ss
1 in the

absence of stress tests as

E
ss
1 =

χ

γσ2
l

[µl − rd − χ ( 1

β
− 1 − rd)] , (54)

and fix the initial equity endowment E0 at this level to ensure comparable results.

To examine the supervisor’s decision in more detail, we compute the optimal τ
∗

for dif-

ferent relative welfare weights ω. In particular, we compute the optimal stress-test tightness

for a supervisor who does not care about lending volatility (i.e. ω = 0), a supervisor who

cares as much about lending volatility as about lending levels (i.e. ω = 1), a supervisor who

is as risk averse as the investor (i.e. ω = γ/2), and a supervisor who is twice as risk averse as

the investor (i.e. ω = γ).

Table 2 below states the resulting, numerically derived optimal stress-test tightness τ
∗
,

the implied minimum equity to asset ratio χ(τ)∗ (see equation (25)), and the associated

supervisory welfare for the different welfare weights given an initial return realization of

rl,0 = µl = 2.66%. Table 2 also reports the 95% confidence intervals of each optimal policy

16
Closed form expressions for µL1

and σ
2
L1

can be found in Appendix C.
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in square brackets. These confidence intervals are obtained by taking 10,000 draws from

the distribution of parameters reported in Table 1 and computing the associated optimal

supervisory policy.

Based on the implied welfare for the respective τ
∗
, it is clear that the supervisory welfare

function is decreasing in the weight given to the variance of loans. The supervisor therefore

optimally sets τ
∗
= 4.05 such that χ(τ∗) = χ when she does not derive any disutility from the

variance of loans (i.e. when ω = 0) to maximize the level of loans. However, as ω increases

and she derives more disutility from the variance of loans, she optimally sets a higher τ
∗

to

reduce that variance. In the other extreme case, i.e. when the supervisor is twice as risk

averse as the investor, she forces the bank to retain an additional stress-test capital buffer of

4%. These estimates generally are associated with confidence bands of up to 2%, indicating

that it might be optimal for a very risk averse supervisor to require additional stress-test

capital buffers of up to 6%. This matches well the Federal Reserve’s publicly announced

stress-test buffers, reported to be between 2.5% to 7.5% in the 2021 CCAR report (Federal

Reserve Board, 2021) and indicates that we are able to capture well both the mechanism

behind and the magnitude of bank balance sheet choices under stress tests.

Table 2: Optimal Stress-test Tightness and Supervisor Welfare

Welfare Weight Optimal Tightness τ
∗

(%) χ(τ∗) Welfare

ω = 0 4.05 7.00 162.96

[4.05 4.05] [7.00 7.00] [123.28 209.56]

ω = 1 9.16 9.62 115.93

[6.90 13.15] [8.46 11.66] [95.22 143.09]

ω = γ/2 10.53 10.32 108.25

[8.23 14.57] [9.14 12.39] [88.45 134.51]

ω = γ 11.81 10.97 101.84

[9.48 15.93] [9.78 13.08] [82.78 127.40]

Note: This table shows the results of computationally maximizing the supervisor’s welfare,
subject to the respective constraints (see Equation 49-53). We rely on the calibration from
Section 3.1 to derive the optimal stress-test tightness τ

∗
, the implied minimum equity to

asset ratio χ(τ∗) (see Equation 25) and the associated supervisor welfare for different welfare
weights ω. Values in square brackets indicate the 95% confidence intervals for each estimate
constructed by taking 10,000 draws from the distribution of parameters reported in Table 1
and computing the associated optimal supervisory policy.

To further illustrate how these findings vary over different realizations of the initial

return state r0, Figure 4 displays the supervisor welfare (left panel) as well as the minimum

equity to asset ratio χ(τ∗) (right panel) implied by the optimal stress-test severity τ
∗

as
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a function of rl,0 for different welfare weights ω. It is clear that the supervisory welfare

function is increasing in the initial return realization rl,0 and decreasing in the weight given

to the variance of loans. However, the differences in welfare and the minimum equity to asset

ratio decrease for higher realizations of rl,0. Therefore, the supervisor would find it optimal

to conduct significantly more severe stress tests during crises, imposing additional capital

buffers of around 15% when loan returns fall below funding costs (i.e. for rl,0 just below rd).

Figure 4: Welfare and Minimum Equity to Asset Ratio under Optimal Stress Tests

(a) Supervisor Welfare
(b) Optimal minimum equity to asset ratio
χ(τ∗)

ω = 0 ω = 1 ω = γ

2

4. Sensitivity Analysis

In this section, we perform two sensitivity analyses to investigate the robustness of the model

and findings. In Section 4.1, we study whether banks would ever voluntarily fail stress tests.

In Section 4.2, we derive the optimal τ
∗

under the assumption that the supervisor also

considers bank investor utility.

4.1. Voluntary Stress-test Violation

In our baseline model environment, banks can neither violate the minimum equity-to-asset

ratio nor the stress-test constraint. The U.S. stress test framework, however, allows for

voluntary violation of the stress-test constraint, albeit automatically triggering a (partial)

ban on dividend payments (see Appendix A for details). This violation allows the bank to

invest up to a binding minimum-equity-to-asset ratio constraint instead. In this section, we

investigate when a bank might find it optimal to purposely violate the stress-test constraint.
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For simplicity, we assume that this immediately triggers a total ban on dividend payments

in that period. Then, voluntary violation implies the following equalities:

d1 =0, (55)

E1 =E0, (56)

D1 =L1 − E0. (57)

Inserting these equalities in the original maximization problem results in the following

revised bank objective:

max
L1

(µl + ρlrl,1)L1 − rd(L1 − E0) + E0 −
γ

2
σ
2
l L

2
1, (58)

s.t.

L1 ∈ [E0,
E0

χ ] . (59)

The upper feasibility limit in (59), where now χ applies instead of χ(τ), reflects that

the violation replaces minimum equity requirements.

Quite intuitively, the upper feasibility limit is binding in very high return states above

a threshold rVl,1, where the bank would like to invest more in loans than the minimum equity

requirements allow. Hence:

L
∗V
1 =

E0

χ ∀rl,1 ≥ r
V
l =

1
ρl

[γσ
2
l

χ E0 + rd − µl] . (60)

On the contrary, the lower feasibility limit is binding in bad return states, where the

bank would like to invest nothing but must at least invest E0. This applies to all return

states below threshold r
V
l,1:

L
∗V
1 =0 ∀rl,1 ≤ r

V
l =

1
ρl

[σ2l E0 + rd − µl] . (61)

In between the two return thresholds, full retainment implies sub-optimally high equity

levels. Hence, the bank no longer chooses to debt-finance as much as possible. Instead, the

bank equity-finances loans with a share strictly above χ but below one. The optimal loan

level is determined by the first-order-condition of the objective function (58), when both

feasibility constraint multipliers are zero. For rl,1 above r
V
l,1 and below rVl,1, this implies an

optimal lending:

L
∗V
1 =

µl − ρlrl,1 − rd

γσ2l
∀rl,1 ∈ (rVl,1, rVl,1) . (62)
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To derive when voluntary violation is optimal, we must compare the total shareholder

utility from voluntary violation, denoted with U
V (d1, d2), to the one from the baseline

analysis, denoted U(d1, d1).

Total utility under voluntary violation:

rl,1 < r
V
l ∶ U

V (d1, d2) = β(µl + ρlrl,1 + 1 − γσ
2
l E0)E0, (63)

rl,1 ∈ [rVl , rVl ] ∶ U
V (d1, d2) = β [(µl + ρlrl,1 − rd)L∗V1 −

γσ
2
l

2
(L∗V1 )

2
+ (1 + rd)E0] , (64)

where L
∗V
1 =

µl + ρlrl,1 − rd

γσ2l
, (65)

rl,1 > r
V
l ∶ U

V (d1, d2) = β [(µl + ρlrl,1 − rd)
E0

χ −
γσ

2
l

2

E
2
0

χ2
+ E0 (1 + rd)] , (66)

Total utility under compliance (baseline):,

rl,1 < rl ∶ U(d1, d2) = E0, (67)

rl,1 ∈ [rl, rl] ∶ U(d1, d2) = E0 − E
∗
1 + β [(µl + ρlrl,1 − rd)L∗1 −

γσ
2
l

2
(L∗1)

2
+ E

∗
1 (1 + rd)] ,

(68)

where L
∗
1 =

E
∗
1

χ(τ) =
µl + ρlrl,1 − rd − χ(τ)(1 − 1/β + rd)

γσ2l
, (69)

rl,1 > rl ∶ U(d1, d2) = β
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(µl + ρlrl,1 − rd)

E0

χ(τ) −
γσ

2
l

2
( E0

χ(τ))
2

+ E0(1 + rd)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (70)

To prove when U
V (d1, d2) exceeds U(d1, d1) is cumbersome, as the sizes of return

thresholds r
V
l and rVl relative to rl and rl strongly depend on the initially inherited equity

E0 relative to other model parameters. Hence, a large number of different utility functions

would have to be compared to cover all cases. Instead, we provide insights for a meaningful

parameter space and numerically study the voluntary violation decision for large US banks,

given our calibration. Figure 5 (below) illustrates when a bank violates the stress tests

voluntarily for the above presented calibration and three levels of initial equity as a function

of the steady state equity level E
ss
1 .

Each of the Panels 5a - 5c has the continuum of loan returns rl,1 on the x-axis and

the range of possible stress-test-implied minimum equity-to-loan ratio requirements on the

y-axis. The gray shaded areas indicate when the bank finds it optimal to voluntarily violate

the stress-test constraint. Here, we can see that this is generally the case for higher χ(τ)
and higher return states rl,1. This should come as no surprise: the higher χ(τ), the lower

the total loans a stress-test compliant bank may issue and the more it can increase the loan
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Figure 5: Optimal Choice of Stress-test Violation

(a) E0 = 0.5 ⋅ ESS1 (b) E0 = E
SS
1

(c) E0 = 2 ⋅ ESS1

capacity by voluntarily violating. Further, expanding loan capacity is more attractive in

good states of the world, where risky loan investment is desirable. On the contrary, exposing

(sub-optimally high) equity levels to risky loans in bad states by violating the stress-test

constraint is not desirable. Therefore, the desirability of violation also decreases with the

size of the initial equity endowment.

Remark 1. For U.S. stress-tested banks, violation is optimal for higher tightness τ , higher

loan return states rl,1, and lower initial equity E0.

It should be noted, however, that the voluntary violation of the stress-test constraint

in our model does not incur any costs above and beyond the restriction on dividend pay-

outs, such as financial market stigma or increased supervisory scrutiny. This explains why

in reality, unlike our model would predict, large banks almost never violate the stress-test

constraint.

24



4.2. Alternative Supervisor Welfare Function

In our baseline model environment we assumed that the supervisor only cares about the

level (and potentially variance) of lending. We now allow the supervisor to also place weight

on the investor’s utility. Therefore, the supervisor sets the optimal stress-test severity to

ensure high and stable levels of lending and of dividends so that the bank is able to meet

its obligation to its shareholder. To capture the trade-off between the supervisor’s and the

investor’s preferences, we assign the welfare weight φ ≥ 0 to the time 0 expected utility of

the bank’s shareholder. For simplicity, we, furthermore, assume that the supervisor and the

investor are equally risk averse, i.e. that ω = γ

2
. Then, observing E0 and rl,0, the supervisor

solves:

max
τ

E[L∗1 ∣ rl,0, E0] −
γ

2
VAR0[L∗1 ∣ rl,0, E0]

+ φ (E[d∗1 ∣ rl,0, E0] + βE[d∗2 ∣ rl,0, E0] − β
γ

2
VAR0[d∗2 ∣ rl,0, E0]) , (71)

s.t.

χ(τ) ∈ [χ, 1). (72)

As Section D.5 in the Appendix shows, the supervisor anticipates rectified normally

distributed L
∗
1 , d

∗
1 , and d

∗
2 . To identify the optimal stress-test tightness τ

∗
, we utilize our

parameterization from Section 3.1 and computationally maximize the supervisor’s welfare

directly, subject to the respective constraints. As argued previously, the fact that loans and

dividends follow rectified distributions prevents us from deriving a closed-form expression for

the optimal stress-test tightness so that we solve this problem numerically. Figure 6 plots

the corresponding supervisor welfare function (left panel) and the minimum equity to asset

ratio χ(τ∗) (right panel) implied by the optimal stress-test severity τ
∗

as a function of the

initial return realization rl,0 for different welfare weights φ.

As in the original welfare function, the supervisor’s welfare is increasing in the initial

return realization rl,0 (note that the solid line here corresponds to the solid line in Figure 4).

Furthermore, the supervisor’s welfare is also increasing in the weight given to the investors

utility. Interestingly, the optimal equity to asset ratio χ(τ∗) is decreasing in the initial return

realization rl,0 but not in the welfare weight φ: For low levels of rl,0 the stress-test severity

is decreasing in the weight she gives to the investor’s preferences, whereas for high levels

of rl,0 the stress-test severity is increasing in the weight given to the investor’s preferences.

However, in general the differences in the supervisor welfare and the minimum equity to

asset ratio for different welfare weights φ are quantitatively small. This indicates that a

supervisor would have to put extraordinarily large weight to the investor’s welfare to make
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Figure 6: Welfare and Minimum Equity to Asset Ratio under Optimal Stress Tests

(a) Supervisor Welfare (b) Optimal minimum equity-to-asset ratio

φ = 1φ = 0.5φ = 0

a quantitatively meaningful difference for the optimal stress-test design.

5. Stress Tests in the Wider Regulatory Environment

Stress tests are a micro-prudential policy tool that complements a rich set of macro-prudential

policies. It is, thus, crucial to understand their combined effectiveness in stabilizing lending

when applied simultaneously. For this purpose, we extend the baseline model to include two

currently utilized policy tools: the Covid-19 dividend ban and the counter-cyclical capital

buffer (CCyB). We provide an additional welfare comparison to the dividend prudential

target proposed as alternative by Muñoz (2020). In the latter, dividends are regulated

directly, but less intensely than in an outright ban. In all three cases, we assume a single

supervisor that simultaneously sets the optimal stress-test severity and macro-prudential

policy rule. A study of supervisory conflict goes beyond the scope of this paper.

5.1. Covid-19 Dividend Restrictions

At the onset of the Covid-19 crisis, several jurisdictions introduced either an outright ban on

dividend payments or a strong recommendation to stop payments temporarily (Beck et al.,

2020). The goal was to boost equity and thereby counteract the procyclicality of lending.

Here, we abstract from any moral suasion frictions between supervisors and banks, and

analyze the effect of an outright dividend ban on bank lending levels.
17

A ban on dividends

17
This is without loss of generality. As Beck et al. (2020) show, most European banks did indeed stop

dividend payments following the ECB’s recommendation.
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implies full equity retainment, such that:

d1 =0, (73)

E1 =E0, (74)

D1 =L1 − E0. (75)

Inserting these into the bank’s original optimization problem results in a revised maxi-

mization similar to the one under voluntary violation:

U
B(d1, d2) = max

L1

(µl + ρlrl,1)L1 − rd(L1 − E0) + E0 −
γ

2
σ
2
l L

2
1, (76)

s.t.

L1 ∈ [E0,
E0

χ(τ)] . (77)

However, here the stress-test constraint still applies and determines the upper bound

of loan investments in (77). Stress tests, thus, act as a feasibility constraint for the revised

bank maximization problem. Again, the lower and upper feasibility bounds on L1 imply two

return thresholds denoted with r
B
l and rBl respectively:

r
B
l =

1
ρl

[γσ2l E0 + rd − µl] rBl =
1
ρl

[ γσ
2
l

χ(τ)E0 + rd − µl] . (78)

Unlike in the baseline model, however, the two thresholds determine the share of debt

financing instead of the degree of equity retainment: for return states below r
C
l,1, the bank

fully equity-finances L1 now equal to E0. Intuitively, in these bad return states, the share-

holder would prefer to liquidate the bank but this is prevented by the dividend ban. Thus

the only remaining option is to invest the existing equity in loans.

L
∗B
1 = E0 ∀ rl,1 ≤ r

B
l . (79)

For intermediate return states, the bank sets an optimal loan level L
∗B
1 that requires

a share of equity financing strictly below one but strictly above χ(τ). Intuitively, in these

return states the shareholder would actually prefer some dividends in period 1 but this is

prevented by the dividend ban. At the same time, the loans are still relatively risky, limiting

the attractiveness of investing in them. Thus the bank utilizes all its equity, but does not

leverage up as much as it could. In this case, the level of lending is:

L
∗B
1 =

µl + ρlrl,1 − rd

γσ2l
∀rl,1 ∈ (rBl , rBl ) . (80)
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For high return states above rBl , the bank debt-finances as much as possible given E0

and χ(τ), where the stress-test constraint now becomes the upper feasibility limit:

L
∗B
1 =

E0

χ(τ) ∀rl,1 ≥ r
B
l . (81)

First, we analytically compare the optimal lending of a bank with free reign over the

dividend payments (Section 2.2) with the one subject to a ban. We show that lending is

higher under the ban for all return states below rl for a given τ . Only for return states above

rl is the feasibility constraint on total lending binding under both regimes and, thus, lending

is identical.
18

Proposition 2. For a given τ , a dividend ban leads to strictly higher lending during crises.

Of course, when setting the optimal τ
∗b

under a dividend ban, a unified supervisor takes

the revised lending function into account. This results in strictly lower stress-test buffers

under the ban where χ(τ∗b) ≤ χ(τ∗) (see Appendix E).

To illustrate the welfare implications of the Covid-19 dividend ban, Figure 7 plots the

supervisor’s welfare given the optimal stress-test severity τ
∗b

(τ
∗
) with (without) a dividend

ban in place. The four panels of Figure 7 illustrate the associated welfare for different

realizations of the initial return on loans rl,0 and different degrees of risk aversion ω.

We find that stress tests in combination with a dividend ban yield a higher welfare

than as a stand-alone regulation in all except very high initial return states. Intuitively,

the dividend ban increases the mean of lending, while the stress test mainly reduces the

variance. Each policy tool, thus, impacts a separate element of the supervisory welfare

function favorably, thereby leading to overall higher welfare. Only in very high return states

does the supervisor expect full-retainment both under a ban and under the stand-alone

stress tests. Thus, the dividend ban cannot incentivize anymore lending and welfare is not

impacted by a ban. Of course, the welfare gains of this policy combination comes to the

detriment of the bank’s shareholders, so the welfare comparison would look less favorable if

the supervisor also took into account the investor’s utility.

18
Note here that for the formal proof, we account for the fact that the thresholds rl may be above or below

r
B
l . However, rBl is always below rl.
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Figure 7: Welfare under a Combination of Optimal Stress Tests and Dividend Bans

Welfare under a combination of optimal Stress Tests and Dividend Bans
Welfare under an optimal Stress Test Framework

5.2. Counter-Cyclical Capital Buffer

A complementary policy tool to the dividend ban is the relaxation of the counter-cyclical

capital buffer (CCyB) during times of crises. In the baseline model we have assumed a

constant χ that is state-independent. Instead, a CCyB implies a state-dependent χ
r

that

takes on a value χ
l
< χ for low return states. This relaxes the stress-test constraint in bad

states via a reduction in χ(τ). Relying on insights from Section 2.2, we know that this

triggers an increase in lending and lowers the return thresholds below which no equity is

retained. Figure 8 below illustrates this.

Proposition 3. For a given τ , a relaxed CCyB increases lending during crises. However,

the CCyB is less effective than a dividend ban.

To illustrate the welfare implications of the CCyB, we numerically solve for the optimal

stress-test tightness under counter-cyclical capital buffers that decrease the stress-test im-

plied equity-to-loan ratio by one percentage point
19

whenever rl,1 < rd, i.e. when the return

on assets drops below the bank’s refinancing costs. As before, when setting the optimal τ
∗

under CCyBs, a unified supervisor takes the revised lending function into account. The four

19
That is, we allow the supervisor to temporarily deviate from the absolute minimum equity-to-asset ratio

χ in times of crises.
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Figure 8: The Impact of CCyBs on Lending

0 rl,1

L
∗
1

E0

χ(τ)

rl rl

Baseline Model
CCyB with χ

r
∈ {χl, χ}

crisis state

panels of Figure 9 illustrate the associated supervisor welfare for different realizations of the

initial return on loans rl,0 and different degrees of risk aversion ω.

As Figure 9 shows, the two different regulatory frameworks behave extremely similar

in welfare terms. In general, even though visually hardly discernibly, the combination of

stress tests and CCyBs yields higher welfare except for the case of low r0 and ω > 0. This

is the case because CCyBs increase the left tail of the lending distribution by reducing the

no retainment state rl and increasing the associated lending choices. The resulting increase

in the expected variance of lending outweighs the resulting increase in the expected level of

lending in low return states. This is not the case in higher initial return states r0, where the

no retainment state is a very unlikely realization so that the associated increase in lending

volatility matters less than the lending increase around the crisis state. Therefore, in these

low realizations of r0 a risk averse supervisor would prefer to adjust the stress-test constraint

only and not having to implement a CCyB on top of it.

Finally, during the Covid-19 crisis many jurisdiction combined the relaxation of the

CCyB with the dividend ban discussed above. Analytically comparing the increased lending

under relaxed CCyBs to those under a dividend ban for a given τ , it can be shown that the

latter results in strictly higher lending in bad states. Intuitively, the main driver of lower

loan levels in bad return states is equity withdrawal, which is not adequately addressed by

relaxing the CCyB but completely eliminated via the ban.

Additionally, we can show in our model that the CCyB has no additional effect once

a dividend ban is put in place. A bank subject to a ban already holds sub-optimally high

equity and debt-finances less is potentially than allowed. Therefore, a relaxed CCyB does

not change the optimal loan levels when activated on top of a dividend ban during a crisis.

Proposition 4. When introduced as a stand-alone, the relaxing of CCyB buffers is less

effective in increasing lending than a stand-alone ban. It has no further effect on lending,
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Figure 9: Welfare under a Combination of Optimal Stress Tests and Counter-cyclical Capital
Buffers

Welfare under a combination of optimal Stress Tests and Counter-cyclical Capital Buffers
Welfare under optimal Stress Tests

when a dividend ban is already in place.

We are, thus, able to provide an explanation for the recent policy puzzle regarding

banks not using their CCyB buffers to finance lending during the Covid-19 crisis (FSB,

2021): additionally relaxing of CCyBs simply does not impact lending choices of already

dividend restricted banks.

5.3. Dividend Prudential Target

Finally, we discuss the dividend prudential target (DPT), initially suggested by Muñoz

(2020). The DPT restricts dividends directly by encouraging retainment in bad states and

pay-outs in good states. It, thereby, attempts to directly offset the banks’ dividend smooth-

ing behavior to avoid capital depletion in bad states and reduce the pro-cyclicality of lending.

In a first step, a DPT defines an ideal dividend pay-out – usually the pay-out made by an

unrestricted bank in steady-state. We follow this tradition and evaluate our baseline model

at the unconditional mean µl of the AR(1) process. The dividends in steady-state, denoted

with d
SS
1 , take on the following value:
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d
SS
1 =E

SS
1 + µ̄

E
SS
1

χ(τ) − rd
⎛
⎜
⎝
E
SS
1

χ(τ) − E
SS
1

⎞
⎟
⎠
− E

SS
1 , (82)

=µl
E
SS
1

χ(τ) − rd
⎛
⎜
⎝
E
SS
1

χ(τ) − E
SS
1

⎞
⎟
⎠
, (83)

= [µl − rd
χ(τ) + rd]

χ(τ)
, γσ

2
l [µl − rd − χ(τ) (

1

β
− 1 − rd)] . (84)

Consequently, a state-dependent target dividend level d
T
1 is defined that increases in the

return state. The goal is to incentive more pay-outs in good and less pay-outs in bad states,

thereby stabilizing both retained equity and lending. Intuitively, the DPT is designed to

directly counteract dividend smoothing that triggers higher pay-outs in bad and lower pay-

outs in good states.

To define such state-dependent DPT, we opt for the simplest possible option by scaling

d
SS
1 with the factor rl,1/µl. This choice ensures that the target pay-out is increasing in the

loan return states and is exactly equal to the steady-state level in steady state:

d
T
1 =

rl,1
µl
d
SS
1 . (85)

Consequently, any (squared) deviations in dividend pay-outs d1 from the target d
T
t are

punished with a cost proportional to the deviation by factor κ:

κ

2
(d1 − dT1 )

2
, (86)

κ

2
(E0 − E1 −

rl,1
µl
d
SS
1 )

2

. (87)

The cost κ is set by the supervisor at t = 0 and, similar to Jermann and Quadrini

(2012), accounts for both fines to be paid and reputation costs from non-compliance. It is

taken as given by the bank at t = 1 and enters the optimization problem in the following

fashion:

U(d1, d2) = max
L1,E1

E0 − E1 −
κ

2
(E0 − E1 −

rl,1
µl
d
SS
1 )

2

+βE1(1 + rd) + β [L1(µl + ρlrl,1) − L1rd −
γσ

2
l

2
L
2
1] , (88)

s.t.

λ1 ∶ L1 ∈ [E1,
E1

χ(τ)] , (89)

λ2 ∶ E1 ∈ [0, E0] . (90)
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An important feature to note from condition (89) in the maximization problem is that

the optimal choice of E1 impacts directly the feasibility constraints of L1. Thus, both when

deriving the the optimal equity and lending choices under the DPT, we need to take this

co-dependency into account. We, nevertheless, start by deriving the optimal equity level

assuming away its impact on lending. After taking the FOC condition with respect to E1,

equating it to zero, and checking feasibility, we get the following constrained-optimal equity

levels:

E
∗
1 =0 ∀ rl,1 ≤ r

∗
l =

µl

dSS1

1
κ (β (1 + rd) − 1) , (91)

E
∗
1 =

1
κ (β (1 + rd) − 1) + E0 −

rl,1
µl
d
SS
1 ∀ rl,1 ∈ (r∗l , r∗∗l ], (92)

E
∗
1 =0 ∀ rl,1 > r

∗∗
l =

µl

dSS1
[1
κ (β (1 + rd) − 1) + E0] .

(93)

Here, we would immediately like to point out that equity now behaves quite differently

than under stress tests: more equity is retained in bad states and less in good. This also

impacts the optimal lending. Abstracting from feasibility constraints, taking the FOC with

respect to L1 and consequently equating it to zero yields the following optimal lending level:

L
∗
1 =

µl + ρlrl,1 − rd

γσ2
l

. (94)

The Figure 10 illustrates both the optimal equity described in equations (91)-(93) and

the unconstrained optimal lending in (94). Here, it is immediately visible that L
∗
1 in (94) is

not feasible for low return states rl,1, where the bank would ideally like to lend out less than

the equity it would like to retain.

Further, we can observe two cases: For low E0 the feasibility constraint only binds

for return states below the full-retainment state (Figure 10a); for high E0, the feasibility

constraint already binds above the full retainment state (Figure 10b). The threshold level

on initial equity E0 distinguising the two cases is:

E0 =
ρlµl

γσ2
l d

SS
1

1
κ (β (1 + rd) − 1) + µl − rd

γσ2
l

. (95)

We denote the return state below which the lower feasibility limit on L
∗
1 binds with r

l
l.

For the case of low E0 ≤ E0 it can be shown, after some cumbersome re-arranging, that the

bank is not willing to reduce the equity level in any return state below r
l
l to relax the lower

limit on lending. Hence, the optimal equity choice is as defined as:

If E0 ≤ E0 ∶
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Figure 10: Optimal Equity for Unrestricted Lending under the DPT
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r
l
l =

γσ
2
l E0 − µl + rd

ρl
, (96)

L
∗
1 =E

∗
1 = E0 ∀ rl,1 ≤ r

l
l. (97)

.

For the case with high E0 ≥ E0, the bank does find it optimal to take the impact on

lending into account, when deciding how much to retain in low return states. Here, we find

that for all states below r
l
l, the bank solves a slightly revised optimization problem, where

E1 = L1. Taking again FOCs with respect to E1 and equating it to zero allows us to derive a

slightly different optimal equity below r
l
l (see equation (100)). The bank can of course only

retain additional equity as long as it is below E0. Even for high E0, the upper-feasibility

constraint is eventually binding below return states r
ll
l :

If E0 ≥ E0 ∶

r
ll
l =

µl

βρlµl − κd
SS
1

[βγσ2
l E0 + 1 − β(1 + µl)] (98)

r
l
l =

µl

ρlµl + γσ
2
l d

ss
1

[γσ
2
l

κ (β(1 + rd) − 1) + γσ2
l E0 + rd − µl] (99)

L
∗
1 =E

∗
1 =

1

κ + βγσ2
l

[−1 + κE0 − κ
rl,1
µl
d
SS
1 + β(1 + µl + ρlrl,1)] ∀ rl,1 ∈ (rlll , rll] (100)

L
∗
1 =E

∗
1 = E0 ∀ rl,1 ≤ r

ll
l . (101)

Regardless whether E0 is high or low, the banks preferred lending level will ultimately
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violate the minimum equity-to-asset ratio in high return states: while optimal equity de-

creases in returns, optimal lending increases. Lending exceed the feasible amount, given

equity, in all return states above a threshold r
h
l . From there on-wards the bank takes into

account that (costly) retainment allows for more (profitable) lending. Nevertheless, there ex-

ists a threshold r
hh
l above which the bank never retains any equity no matter how profitable

lending would be:

r
h
l =

χ(τ)µl
χ(τ)ρlµl + γσ2

l d
SS
1

[ γσ
2
l

χ(τ)κ (β(1 + rd) − 1) + γσ
2
l

χ(τ)E0 − µl + rd] , (102)

r
hh
l =

µlχ(τ)
κdSS1 χ(τ) − µlβρl

[−1 + κE0 + β(1 + rd) + β
µl − rd
χ(τ) ] . (103)

Inserting L1 = E1/χ(τ) and, again, taking FOCs yields the following optimal lending

and equity in high return states.

E
∗
1 = χ(τ)L∗1 =

χ(τ)2

χ(τ)2κ + βγσ2l
[−1 + κE0 − κ

rl,1
µl
d
SS
1 + β(1 + rd) + β

µl + ρlrl,1 − rd
χ(τ) ] ∀ rl,1 ∈ (rhl , rhhl ]

(104)

E
∗
1 = χ(τ)L∗1 =0 ∀ rl,1 > r

hh
l

(105)

Summarizing the just derived solutions is a bit cumbersome and, we believe, not very

informative for the reader. Therefore, we rather display the functional forms of L
∗
1 and E

∗
1

for both the low and high initial equity case in Figure 11 below. For the full set of analytical

expressions on the return thresholds, the reader is kindly asked to refer to the Appendix

D.4.

It can be seen in Figure 11 that a DPT results in a hump shaped policy function over

the state-space for both equity and lending. The punishment parameter κ influences the

mean and variance of both by affecting equity choices directly and, furthermore, affecting

the threshold interest rate levels. Recall that the supervisory authority sets κ in period 0

with the objective to stabilize lending, putting welfare weight ω on the expected lending

variance.

Unfortunately, a full closed-form characterization of the mean and variance of lending is

cumbersome and provides few general insights. We therefore again immediately rely on the

calibrated model (assuming E0 = E
ss

) to jointly derive the optimal κ
∗

& τ
∗

and resulting

supervisory welfare.
20

Again, we derive the optimal κ for a range of different initial return

20
When numerically maximizing the supervisor’s welfare function we impose that the supervisor cannot

set κ in such a way that r
hh
l < r

l
l. That way loans would be set to zero for basically all loan return states

which would of course minimize the volatility of lending. The condition that loans cannot be zero resembles
the standard Inada condition.
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Figure 11: Feasibility-Constrained Optimal Equity and Lending under the DPT
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states r0 and welfare weights ω (see Appendix D.4).

For intuition, we first plot the resulting policy functions for equity and loans for the

optimal κ that maximizes the supervisor’s welfare function (see Equation 49), assuming

rl,0 = µ̄ and ω = 1.
21

The left panel of Figure 12 shows that, relative to the stress-test

framework, retained equity under the DPT is higher (lower) for bad (good) states. The DPT,

thus, successfully addresses the pro-cyclical retainment of equity and dividend smoothing.

Further, the right panel shows that, for most return states, the bank uses this equity to lever

up slightly more than under the stress-test framework. Only for very high return states,

substantially above 4% (not pictured), the DPT to lower loan levels than the stress-testing

framework. In general, the DPT trades off lower expected lending in good states for higher

lending in bad states (see Figure E.3) and generally lower lending volatility E.4) by inducing

banks to retain more (less) equity in bad (good) states.

Therefore, it is no surprise that the combination of stress tests and a DPT is more

likely to be welfare improving the more the supervisor dislikes lending volatility, as Figure

13 illustrates. For a supervisor who only cares about the level of lending, a combination of

DPT and stress tests is naturally welfare improving only for relatively bad return states. In

better states, the supervisor would prefer to set κ = 0, i.e. revert to a framework of stress

tests alone, which we have ruled out here for the sake of the welfare comparison. However, as

the supervisor becomes more risk averse, the return state for which the combination of DPT

and stress tests improves over stress tests alone shifts upwards. Therefore, the suitability of a

21
in this case κ

∗
= 0.06 & χ(τ∗) = 7.5% - see Figure E.1 for a full illustration of the optimal κ

∗

36



Figure 12: Optimal Policies under Stress Tests and a Dividend Prudential Target

Policies under an optimal Stress Test Framework
Policies under an optimal Dividend Prudential Target

DPT to stabilize lending on top of stress tests increases in the risk aversion of the supervisor.

Figure 13: Welfare under Optimal Stress Tests and a Dividend Prudential Target

Welfare under an optimal Dividend Prudential Target
Welfare under an optimal Stress Test Framework
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5.4. Policy Comparison

To round off our discussion of stress tests in the wider regulatory context, we compare the

supervisory welfare between the three different regulatory frameworks presented above. To

begin with, Table 3 presents the supervisor welfare (Panel A) and implied optimal equity-

to-asset ratio χ(τ∗) (Panel B) for the respective optimal stress-test tightness τ
∗

at r0 = µ̄.

Table 3: Welfare Comparison

Policy Framework ω = 0 ω = 1 ω = γ/2 ω = γ

A. Supervisor Welfare

Stress Test 162.96 115.93 108.25 101.84

Stress Test + Dividend Ban 164.11 119.21 111.76 105.57

Stress Test + CCyB 162.96 115.93 108.25 101.84

Stress Test + DPT 135.04 119.20 111.76 105.56

B. Minimum equity-to-asset ratio χ(τ∗) in %

Stress Test 7.00 9.62 10.32 10.97

Stress Test + Dividend Ban 7.00 9.40 10.05 10.65

Stress Test + CCyB 7.00 9.62 10.32 10.97

Stress Test + DPT 7.00 7.50 8.12 8.74

As Table 3 illustrates,a risk neutral supervisor (i.e. ω = 0) would always set the stress-

test implied equity buffer equal to zero. Additionally, she would clearly attain a higher

welfare than by instituting a blanket dividend ban relative to any other frameworks. This

comes at no surprise, given that the ban universally boosts lending levels.

For a risk averse supervisor, on the other hand, the DPT has almost identical welfare

implications as a dividend ban (even though the dividend ban leads to a higher supervisor

welfare in the second decimal point) and both improve in welfare terms over the other frame-

works. Both policy combinations achieve these higher supervisor welfare values even though

they imply lower minimum equity-to-asset ratios χ(τ∗) as Panel B of Table 3 illustrates.

This is the case because they simultaneously make equity withdrawal costly.
22

Furthermore,

Figure 14 illustrates, that the dividend ban and the DPT diverge in welfare terms for higher

initial return states because the dividend ban leads to relatively higher expected lending in

these states. The point of divergence is increasing in the supervisor’s degree of risk aversion

and thus becomes less likely ex ante. A stress test on its own or in combination with a CCyB

always yields relatively lower welfare than the ban and the DPT.

22
The dividend ban of course puts an infinite punishment fee on deviating from its imposed dividend target

of zero.
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Finally, we would like to note that the welfare gains of the dividend ban of course come

at an absolute cost of the bank’s shareholder. This is not the case under the DPT, where

in all but very high return states some dividends are paid. Thus, the DPT is uniquely well

positioned to stabilize lending, when considering overall welfare. A complementary study by

Ampudia et al. (2022), comparing the welfare under a ban and a DPT in a dynamic DSGE

framework, equally find the DPT to be welfare improving. Here, we are able to validate their

findings to hold even when taking the micro-prudential stress-test constraint into account.

Figure 14: Supervisor Welfare under Optimal Stress Tests + Macroprudential Policies

Welfare under an optimal Stress Test Framework
Welfare under an optimal CCyP
Welfare under an optimal Dividend Ban
Welfare under an optimal DPT

6. Conclusion

Regularly conducted bank stress tests have become an increasingly important policy tool

designed with the intent to ensure stable lending and, thereby, to foster financial stability.

In this paper, we derive the optimal bank balance sheet choices subject to a forward-looking

stress test-constraint: equity levels should be sufficient to maintain current lending tomorrow,

even after absorbing severe losses from said lending. We find that stress tests influence the
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banks’ joint decision over (retained) equity, dividends, and lending. Here, we document the

core supervisory trade-off: the more severe the assumed losses, the lower are both expected

lending and lending volatility.

To quantitatively assess how such a trade-off plays out in practice, we calibrate our

model to the U.S. banks subject to the CCAR stress tests. We derive the optimal stress-

test tightness (severity of the adverse scenario) and the implied stress-test capital buffer.

We find that a supervisor who prefers to maximize lending levels while minimizing lending

volatility finds stress-test equity buffers of up to 6% to be optimal. This matches well the

Federal Reserves’ publicly announced stress-test buffers, reported to be between 2.5% to

7.5% in the 2021 CCAR report (Federal Reserve Board, 2021). This indicates that we are

able to capture well both the mechanism behind and the magnitude of bank balance sheet

choices under stress tests. We, further, confirm that these buffers do not incentivize banks

to voluntarily violate stress tests in bad times and are largely unaffected by welfare concerns

for bank shareholders.

Finally, we place the stress-test framework in the wider net of macro-prudential poli-

cies. Here, we highlight in particular the welfare effect of complementing stress tests with a

dividend ban, a relaxation of the CCyB in crisis periods, and a dividend prudential target

increasing in returns. We find that separately introduced, both relax lending of stress-tested

banks in bad states of the world. They can, thus, be utilized to dampen the stress-test

induced decrease in lending during downturns. However, CCyB activation is less effective

than the dividend ban and, when introduced on top of the ban, has no further effects. We

are thus able to rationalize why the relaxation of the CCyB during the onset of the Covid-19

pandemic had no measurable effect on lending by stress-tested banks subject to the dividend

bans (FSB, 2021). Using our calibrated model, we compare these different macro-prudential

policy complements in terms of supervisor welfare. We conclude that a dividend ban and a

dividend prudential target are both very well suited for a risk-averse supervisor to stabilize

lending, whereas the CCyB barely makes a difference compared to the stress test on its own.
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Garćıa, R. E. and S. Steele (2022, 2). Stress testing and bank business patterns: A regression

discontinuity study. Journal of Banking & Finance 135, 105964.

Goldstein, I. and Y. Leitner (2018a). Stress tests and information disclosure. Journal of

Economic Theory 177 (C), 34–69.

Goldstein, I. and Y. Leitner (2018b). Stress tests and information disclosure. Journal of

Economic Theory 177, 34–69.

42



Gollier, C., P.-F. Koehl, and J.-C. Rochet (1997). Risk-Taking Behavior with Limited Lia-

bility and Risk Aversion. The Journal of Risk and Insurance 64 (2), 347–370.

Jermann, U. and V. Quadrini (2012). Macroeconomic Effects of Financial Shocks . American

Economic Review 102 (1), 238–271.

Koussis, N. and M. Makrominas (2019). What factors determine dividend smoothing by US

and EU banks? Journal of Business Finance and Accounting 46 (7-8), 1030–1059.

Lambrecht, B. M. and S. C. Myers (2012, 10). A Lintner Model of Payout and Managerial

Rents. The Journal of Finance 67 (5), 1761–1810.

Larkin, Y., M. T. Leary, and R. Michaely (2017, 12). Do investors value dividend-smoothing

stocks differently? Management Science 63 (12), 4114–4136.

Levy, H. and H. M. Markowitz (1979). Approximating Expected Utility by a Function of

Mean and Variance. The American Economic Review 69 (3), 308–317.

Markowitz, H. (2014, 4). Mean–variance approximations to expected utility. European

Journal of Operational Research 234 (2), 346–355.

Morgan, D. P., S. Peristiani, and V. Savino (2014). The Information Value of the Stress

Test. Journal of Money, Credit and Banking 46 (7), 1479–1500.
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Appendix A. Regulatory Framework

Following the financial crisis 08/09, the Federal Reserve Board (FED) was mandated to

perform two complementary stress tests: the Comprehensive Capital Analysis and Review

(CCAR) and the Dodd-Frank Act stress testing (DFAST). The CCAR is a forward-looking

exercise and assesses bank holding companies’ (BHC) capital adequacy accounting for indi-

vidual dividend payment plans. Banks with assets of 10$bn and above are required to take

part in the CCAR. The DFAST takes the last three quarters’ dividend policy as given and

mainly focuses on the sufficiency of loss-absorbing capital (Federal Reserve Board, 2020c).

Banks with assets of 250$bn and above are required to take part in the DFAST. For the pur-

pose of this study (apart from the calibration), we focus on the CCAR stress test framework,

which is described in detail in the following paragraphs.

CCAR Stress Test As part of the CCAR stress test, the FED calculates the

individual BHCs’ capitalization under three scenarios: baseline, supervisory adverse, super-

visory severely adverse. Here, they account for the BHCs’ proposed future dividend payments

and capital repurchase plans. Subsequently, the FED decides whether to approve a BHC’s

planned capital actions by compare the post-stress capital levels under the severely adverse

scenarios to the minimum capital requirements plus surcharges (Berrospide and Edge, 2019;

Federal Reserve Board, 2019b).

Minimum Capital Requirements From 2009-2013, all stress-test eligible BHCs

were subject to a minimum tier 1 common ratio of 5%. In 2014, all banks with at least $250

billion total assets or more than $10 billion foreign asset exposure were subject to a 4%

minimum common equity tier 1 ratio (CET1) instead. The remaining banks continued to be

subject to the 5% minimum tier 1 common ratio for one more year. From 2015 onward, all

BHCs were subject to a 4.5% minimum common equity tier 1 ratio (Federal Reserve Board,

2015, 2016). This change in minimum capital measures was part of the phase-in of the Basel

III framework, which also introduced additional capital surcharges.

Capital Surcharge BHCs identified as globally systemically important banks

(G-SIB) are subject to additional minimum risk-adjusted capital measures of 1%-3.5%. From

2014 to 2016, the Basel Committee on Banking Supervisisons capital add-on is applied.

Since 2017, the maximum of the surcharges calculated under the Basel capital framework

and the Federal Reserve Board’s assessment methodology titled ”Method II” applies (Office

of Financial Research, 2021). Additionally, a 2.5% conservation buffer was phased in from

2016-2019 (Federal Reserve Board, 2013, 2014). For our sample period, the banks are not

subject to any countercyclical capital buffer (Federal Reserve Board, 2019a).
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Table A.1: Maximum Dividend to Net-income Ratio Given CET1

CET1 Maximum Pay-out Ratio

< 5.125% 0%
5.125% − 5.75% 20%
5.75% − 6.375% 40%

6.375% − 7% 60%
> 7% no limitations

Source: BIS (2019)

Supervisory Power over Dividend Payments Stress-test eligible BHCs are

prohibited from any dividend payments and share repurchases until the FED has approved

of the capital distribution plan in writing. As mentioned above, such approval is based

on the stress test performance and follows in three steps. First, the FED performs an

initial set of stress tests given the BHCs’ original dividend payout plan. The resulting

(preliminary) stress-test results are communicated to the BHC. All BHCs, both insufficiently

and sufficiently capitalized, are allowed once to submit an adjusted capital plan (Berrospide

and Edge, 2019; Federal Reserve Board, 2019b).

Then either the original or, if submitted, adjusted capital plan forms the base for the

FED’s payout policy interventions. Capital levels below the minimum tier 1 common ratio or

CET1 (plus G-SIB surcharge) respectively, automatically trigger a payout ban. A violation of

the capital conservation buffer automatically results in dividend payments to be restricted

to a percentage of net income (see Table A.1). Sufficient capital levels do not result in

automatic restrictions. The Fed, however, reserves the right to require a BHC to reduce or

cease all capital distributions if it felt that the weaknesses in the BHC’s capital planning

warranted such a response (Federal Reserve Board, 2014). Thus BHCs may feel supervisory

pressure especially when close to but not yet violating their respective minimum capital

requirements.

Recent Developments In 2020, the Federal Reserve Board decided to replace

the 2.5% capital conservative buffer by an individual stress test buffer for each BHC (Federal

Reserve Board, 2020b,a). This falls outside our sample period.
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Appendix B. Proofs for Section 2

B.1. Solving the Bank’s Optimization Problem

1. We start by defining dividend payments at t = 1 and t = 2.

d1 =E0 − E1 (B.1)

d2 =L1rl,2 − rdD1 + E1 ∼ N(µ, σ2) (B.2)

where µ =(µl + ρlrl,1)L1 − rdD1 + E1 (B.3)

and σ
2
=σ

2
l L

2
1 (B.4)

Further note that D1 is perfectly determined by E1 and L1 via the budget constraint:

D1 = L1 − E1 (B.5)

Finally, note that plugging this into the stress-test constraint yields:

χL1 ≤E1 + L1(µl − τσl − rd(L1 − E1) (B.6)

(χ − µl + τσl + rd)L1 − (1 + rd)E1 ≤0 (B.7)

2. Using the above stated equations and standard properties of a normal distributions,

allows us to reduce the bank optimization problem to:

U(d1, d2) = max
E1,L1

E0 − E1 + β [L1(µl + ρlrl,1 − rd(L1 − E1) + E1 −
γσ

2
l

2
L
2
1)] (B.8)

s.t.

λ1 ∶ χL1 − E1 ≤ 0 (B.9)

λ2 ∶ (χ − µl + τσl + rd)L1 − (1 + rd)E1 ≤ 0 (B.10)

λ3 ∶ E1 − E0 ≤ 0 (B.11)

λ4 ∶ E1 − L1 ≤ 0 (B.12)

λ5 ∶ E1 ≥ 0 (B.13)

We denote the multipliers associated with constraints (B.9)- (B.13) with λ1 through λ5

respectively.

3. Before taking any first order conditions, two comments on the constraints.

3.1. Notice that multipliers λ3 and λ5 can never be simultaneously be positive. They

describe each their own corner solution: full retainment of equity and no retainment of

equity.

3.2. Depending on τ , either minimum-equity and stress-test test constraint binds first.
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The other one consequently only binds in states in which the first one is already binding.

We start by rearranging the stress-test constraint:

(χ − µl + τσl + rd)
(1 + rd)

L1 ≤ E1 (B.14)

Then notice that the multiplier in front of L1 in the above equation is determined

fully by model parameters and does not depend on equilibrium choices. Further, it enters

multiplicatively into the constraint in the same fashion as χ.

Then, logically, the stress-test constraint binds first whenever:

(χ − µl + τσl + rd)
(1 + rd)

≥χ (B.15)

τ ≥
rdχ + µl − rd

σl
= τ

∗
(B.16)

And in reverse logic, the minimum equity constraint binds first, whenever τ < τ
∗
. This

concludes the proof for Lemma 1.

4. The above described result of 3.2. allows us actually to combine the two supervisory

constraints in the following fashion:

χ(τ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ τ < τ
∗

rdχ+µl−rd
σl

τ ≥ τ
∗

(B.17)

And the revised constraint, which nests both cases, is:

χ(τ)L1 ≤E1 (B.18)

5. Then, we start solving the simplified maximization problem by assuming the bank

has choosen a feasible level E1 ∈ [0, E0]. Taking E1 as given reduces the bank optimization

problem to:

U(E0 − E1, d2) = E0 − E1 + βE1(1 + rd) +max
L1

β [L1(µl + ρlrl,1) − L1rd −
γσ

2
l

2
L
2
1] (B.19)

s.t.

λ1+2 ∶ χ(τ)L1 − E1 ≤ 0 (B.20)

λ4 ∶ − L1 + E1 ≤ 0 (B.21)

Then, the FOC wrt to L1 becomes:

(µl + ρ1,lrl,1) − rd − γσ2
l L1 − λ1+2χ(τ) + λ4 = 0 (B.22)
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6. We now discuss the different cases for the multipliers. Here, notice that λ1+2 and

λ4 can never bind simultaneously: one would bind if the bank would like to set significantly

lower L1 than E1 and one would bind if the bank would like set significantly higher than

E1/χ.

6.1. With this in mind, we start with (temporarily) ignoring both constraints. Then,

the optimal loan level is:

L1 =
µl + ρlrl,1 − rd

γσ2
l

(B.23)

6.2. Then for a given E1, logically there exists a lower threshold level r
∗
l,1 for which

investing L1 = E1 is optimal. And for all lower levels, the bank would like to set L1 < E1

but cannot due to its constraint choice.

Following a similar logic there exist a second threshold r
∗∗
l,1 , for which the bank would

like to invest E1/χ units into loans. And for any higher level, it would like to invest more,

but cannot due to the minimum equity constraint.

6.3. However, as we will see later, these two thresholds are not really playing a core role,

because E1 is chosen by the bank and not taken as given. Here, it is important to take away

from Equation (B.23) that any interior solution of L1 without either constraints binding is

independent of the level of equity E1.

7. Lets start with assuming that λ1+2 = λ4 = 0. This implies that the bank indeed

finances some loans, but that these loans are more equity-financed than strictly required.

7.1. Recall then that L1 is independent of E1 and thus, the optimal level of E1 can be

chosen by the following optimization problem:

U(d1, d2) = max
E1

E0 − E1 + β(1 + rd)E1 (B.24)

s.t.

λ3 ∶ E1 − E0 ≤ 0 (B.25)

Abstracting for now from constraint λ3 this implies a FOC wrt E1:

−1 + β(1 + rd) (B.26)

Relying on parameter assumptions, it can be shown that this FOC is always negative:

−1 + β(1 + rd) <0 (B.27)

(1 + rd) ≤
1

β
True by assumption (B.28)
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Hence, any interior solution with only partial debt-financing cannot be sustained. Any

solution with positive loan levels is characterized by E1 = χ(τ)L1.

8. With this in mind, we can now derive the optimal equity level E1 by solving the

following maximization problem:

U(d1, d2) = max
E1

E0 − E1 + β [ E1

χ(τ)(µl + ρlrl,1) −
γσ

2
l

2χ(τ)2E
2
1 − rd

1 − χ(τ)
χ(τ) E1 + E1] (B.29)

s.t.

λ4 ∶ E1 − E0 ≤ 0 (B.30)

λ5 ∶ − E1 ≤ 0 (B.31)

8.1. Again, we will for now ignore the two feasibility constraints. Then the FOC wrt

E1:

−1 + β [
µl + ρlrl,1
χ(τ) −

γσ
2
l

χ(τ)2E1 − rd
1 − χ(τ)

χ + 1] =0 (B.32)

E
∗
1 =

χ(τ)2

γσ2
l

[
µl + ρlrl,1
χ(τ) − rd

1 − χ(τ)
χ + 1 −

1

β
] (B.33)

8.2. Now recall that an constraint solution requires E1 ≤ E0. This holds up until:

χ(τ)2

γσ2
l

[
µl + ρrl,1
χ(τ) − rd

1 − χ(τ)
χ + 1 −

1

β
] ≥E0 (B.34)

rl,1 ≥
1
ρl

[ γσ
2
l

χ(τ)E0 + χ(τ) (
1

β
− 1) + rd(1 − χ(τ)) − µl] = rl (B.35)

Or in other words, for any level of rl,1 exceeding the threshold rl equity is fully retained

and invested in loans. The optimal bank choices and (expected) dividends are thus:

E
∗
1 =E0 (B.36)

L
∗
1 =

E0

χ(τ) (B.37)

d
∗
1 =0 (B.38)

E[D∗
1 ] =E0 [

µl + ρlrl,1
χτ − rd

(1 − χ(τ))
χ(τ) + 1] (B.39)

8.3. A similar logic can be applied for the lower bound such that:

χ(τ)2

γσ2
l

[
µl + ρrl,1
χ(τ) − rd

1 − χ(τ)
χ + 1 −

1

β
] ≤0 (B.40)

rl,1 ≤
1
ρl

[χ(τ) ( 1

β
− 1) + rd(1 − χ(τ)) − µl] = rl (B.41)
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Or put differently, for any realized stated rl,1 weakly below rl no equity is retained. The

bank’s equilibrium choices and (expected) dividends are thus:

L
∗
1 =E

∗
1 = D

∗
1 = 0 (B.42)

d1 =E0 (B.43)

8.4. For intermediate levels rl,1 ∈ (rl, rl) and interior solution exists with:

E
∗
1 =

χ(τ)2

γσ2
l

[
µl + ρlrl,1
χ(τ) − rd

1 − χ(τ)
χ(τ) + 1 −

1

β
] (B.44)

L
∗
1 =

E
∗
1

χ(τ) (B.45)

d
∗
1 =E0 − E

∗
1 (B.46)

E[D∗
1 ] =E∗

1 [
µl + ρlrl,1
χ(τ) − rd

1 − χ(τ)
χ(τ) + 1] (B.47)

B.2. Comparative Statics Over τ

We now compare an environment where τ < τ̃ such that χ(τ) = χ with an environment,

where τ > τ̃ such that χ(τ ≥ τ) > χ.

1. We start by showing that that r
s
l < r

n,e
l .

r
s
l <r

n,e
l χ ( 1

β
− 1 − rd) < χ(τ)τ̃ < τ (B.48)

2. Further, we can show that rsl > r
n,e
l :

rsl >r
n,e
l (B.49)

γσ
2
l

χ E0 + χ ( 1

β
− 1 − rd) >

γσ
2
l

χ(τ)E0 + χ(τ) (
1

β
− 1 − rd) (B.50)

γσ
2
l E0 (

1
χ −

1

χ(τ)) >(χ(τ) − χ) (
1

β
− 1 − rd) (B.51)

Notice that the right hand side is a term very close to zero, and thus the inequality

holds true under the assumption that E0 >> 0.

3. With this, we know the upper and lower feasibility implied thresholds for equity and

thus lending. Now, we turn to the slope of the optimal equity and lending policies.

∂E
∗
1

∂rl,1
=
χ(τ)
γσ2

l

ρl (B.52)
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∂
2
E1

∂rl,1∂χ(τ)
=
ρl

γσ2
l

> 0 (B.53)

3.1. It can be shown that E
∗
1 increases linearly in rl,1:

∂E
∗
1

∂rl,1
=
χ(τ)
γσ2

l

ρl (B.54)

And confirming the relative return state bounds, it can be shown that the slope is

steeper, the higher is τ :

∂
2
E1

∂rl,1∂χ(τ)
=
ρl

γσ2
l

> 0 (B.55)

This implies that under a stress-test constraint, the bank starts to retain equity only in

relatively higher states, but once started, it reaches full retainment earlier. Naturally, there

exists a threshold r̃ for which the two equity functions intersect.

3.2. Turning to the loans, one can show that L
∗,s
1 < L

∗,e
1 . Her,e we first start with the

loan rates implying E1 < E0. Then:

L
∗,s
1 <L

∗,e
1 (B.56)

−χ(τ) ( 1

β
− 1 − rd) < χ ( 1

β
− 1 − rd) (B.57)

χ < χ(τ) (B.58)

τ̃ <τ (B.59)

Now, we consider the high return states inducing E
∗
1 = E0:

L
∗,s
1 <L

∗,e
1 (B.60)

E0

χ(τ ≥ τ) <
E0

χ (B.61)

χ <χ(τ) (B.62)

τ̃ <τ (B.63)

We omit the proof for the variance of lending here due to its complexity here, and discuss

it in detail during the supervisory problem. We would nevertheless like to highlight here,

that lending L
∗
1 follows a rectified normal distribution with a lower and an upper bound. By

increasing τ (above τ̃), we bring the bounds closer together, thus reducing the variance of

the overall distribution.
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Appendix C. The Optimal Tightness τ

In this section, we derive the optimal supervisory choice under two different objective func-

tions. To maintain tractability, we will assume that the realization of return states above

r
f,s
l,1 are very low probability events for large banks with sufficient equity stocks. Thus, loan

levels are fully characterized. Let us denote the optimal lending in the absence of feasibility

constraints with L
x
1 , where:

L
x
1 =

1

γσ2l
[µl + ρlrl,1 − rd − χ(τ) (

1

β
− 1 − rd)] (C.1)

L
x
1 ∼N(µx, σ2x) (C.2)

µx =
1

γσ2l
[µl + ρl(µl + ρlrl,0) − rd − χ(τ)(1/β − 1 − rd)] (C.3)

σ
2
x = ( ρl

γσl
)
2

(C.4)

The optimal bank lending L
∗
1 thus takes the following step-function.

L
∗
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 L
x
1 < 0

L
x
1 0 ≥ L

x
1 ≥

E0

χ(τ)
E0

χ(τ) L
x
1 >

E0

χ(τ)

(C.5)

Appendix D. Additional Proofs

D.1. Proofs for Voluntary Violation

Voluntary violation of the stress-test constraint implies a ban on dividends and, thus, the

following equalities:

d1 =0 (D.1)

E1 =E0 (D.2)

D1 =L1 − E0 (D.3)

With this, the optimization problem reduces to:

max
L1

(µl + ρlrl,1)L1 − rd(L1 − E0) + E0 −
γ

2
σ
2
l L

2
1 (D.4)

s.t.

L1 ∈ [E0,
E0

χ ] (D.5)
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Here note that the upper feasibility limit is now determined by χ and not anymore χ(τ).
Ignoring the two feasibility constraints for now, the FOC and the consequent optimal

lending level are:

µl + ρl − rd − γσ
2
l L1 =0 (D.6)

L
∗V
1 =

µl + ρlrl,1 − rd

γσ2l
(D.7)

Recall that L
∗V
1 is bounded above by the minimum asset-to-equity ratio constraint which

allows us to derive a threshold rVl . Similarly, in this business model L1 can never be below

E0, allowing us a lower threshold r
V
l

rVl =
1
ρl

[γσ
2
l

χ E0 + rd − µl] (D.8)

r
V
l =

1
ρl

[γσ2l E0 + rd − µl] (D.9)

With this in mind, it remains to be shown when the total utility exceeds the one of

complying to the stress-test constraint. The resulting total utility from violation is:

rl,1 < r
V
l ∶ U

V (d1, d2) = β(µl + ρlrl,1 + 1 − γσ
2
l E0)E0 (D.10)

rl,1 ∈ [rVl , rVl ] ∶ U
V (d1, d2) = β [(µl + ρlrl,1 − rd)L∗V1 −

γσ
2
l

2
(L∗V1 )

2
+ (1 + rd)E0] (D.11)

where L
∗V
1 =

µl + ρlrl,1 − rd

γσ2l
(D.12)

rl,1 > r
V
l ∶ U

V (d1, d2) = β [(µl + ρlrl,1 − rd)
E0

χ −
γσ

2
l

2

E
2
0

χ2
+ E0 (1 + rd)] (D.13)

This, we have to compare to the following aggregate utilities from complying:

rl,1 < rl ∶ U(d1, d2) = E0 (D.14)

rl,1 ∈ [rl, rl] ∶ U(d1, d2) = E0 − E
∗
1 + β [(µl + ρlrl,1 − rd)L∗1 −

γσ
2
l

2
(L∗1)

2
+ E

∗
1 (1 + rd)]

(D.15)

where L
∗
1 =

E
∗
1

χ(τ) =
µl + ρlrl,1 − rd − χ(τ)(1 − 1/β + rd)

γσ2l
(D.16)

rl,1 > rl ∶ U(d1, d2) = β
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(µl + ρlrl,1 − rd)

E0

χ(τ) −
γσ

2
l

2
( E0

χ(τ))
2

+ E0(1 + rd)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(D.17)
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To derive when violation would be optimal, one must compare the appropriate utilities

given the return state rl,1. A challenge here is that r
V
l ⋚ rl and rVl ⋚ rl, depending on E0:

r
V
l ⋚rl (D.18)

1
ρl

[γσ2l E0 + rd − µl] ⋚
1
ρl

[χ(τ) ( 1

β
− 1 − rd) + rd − µl] (D.19)

E0 ⋚
χ(τ)
γσ2l

( 1

β
− 1 − rd) (D.20)

rVl ⋚rl (D.21)

1
ρl

[γσ
2
l

χ E0 + rd − µl] ⋚
1
ρl

[ γσ
2
l

χ(τ)E0 + χ(τ) (
1

β
− 1 − rd) + rd − µl] (D.22)

E0 ⋚
χχ(τ)2

(χ(τ) − χ)γσ2l
( 1

β
− 1 − rd) (D.23)

Without further restrictions on E0, a closed-form proof is a cumbersome comparison

of all possible combinations for the different functional forms that the utilities may take.

As this provides little additional insight without restricting the parameter space, we refrain

from doing so. Instead, we show when voluntary violation is optimal for the above calibrated

parameters and several different values of E0. Please refer to the main text for results.

D.2. Covid-19 Dividend Ban

Sketch of proof for Proposition 2.

1. A ban on bank dividend payments implies the following equalities:

d1 =0 (D.24)

E1 =E0 (D.25)

D1 =L1 − E0 (D.26)

2. As the stress-test constraint is still binding, the optimization problem reduces to:

max
L1

(µl + ρlrl,1)L1 − rd(L1 − E0) + E0 −
γ

2
σ
2
l L

2
1 (D.27)

s.t.

L1 ∈ [E0,
E0

χ(τ)] (D.28)
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3. Temporarily ignoring the two feasibility constraints, taking the FOC and equating it

to zero yields the following optimal lending level:

µl + ρl − rd − γσ
2
l L1 =0 (D.29)

L
∗B
1 =

µl + ρlrl,1 − rd

γσ2l
. (D.30)

4. Now, we turn to the upper feasibility limit on L
∗B
1 determined by the stress-test-

implied minimum asset-to-equity ratio constraint. This allows us to derive a threshold rBl :

L
∗B
1 ≥

E0

χ(τ) (D.31)

rl,1 ≥
1
ρl

[ γσ
2
l

χ(τ)E0 + rd − µl] = rBl (D.32)

Similarly, in this business model L1 can never be lower than E0, allowing us to define

the lower threshold r
B
l

L
∗B
1 ≤E0 (D.33)

rl,1 ≤
1
ρl

[γσ2l E0 + rd − µl] = rBl (D.34)

5. Then, the total utility under the Covid-19 dividend ban, denoted with U
B(d1, d2),

becomes:

rl,1 < rl ∶ U
B(d1, d2) = β(µl + ρlrl,1 + 1 − γσ

2
l E0)E0 (D.35)

rl,1 ∈ [rl, rl] ∶ U
B(d1, d2) = β [(µl + ρlrl,1 − rd)L∗B1 −

γσ
2
l

2
(L∗B1 )

2
+ (1 + rd)E0] (D.36)

where L
∗B
1 =

µl + ρlrl,1 − rd

γσ2l
(D.37)

rl,1 > rl ∶ U
B(d1, d2) = β [(µl + ρlrl,1 − rd)

E0

χ −
γσ

2
l

2

E
2
0

χ(τ)2 + E0 (1 + rd)] (D.38)

6. We are left with showing that L
∗
1 < L

∗,B
1 :

6.1. Assume a realized rl,1 in the range (−∞, min{rl; , rBl }]. Then:

L
∗
1 <L

∗B
1 (D.39)

0 <E0 (D.40)

6.2. Assume a realized return in the range (rl, rBl ]. Then:
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L
∗
1 <L

∗B
1 (D.41)

µl + ρlrl,1 − rd − χ(τ)(1/β − 1 − rd)
γσ2l

<E0 (D.42)

rl,1 <
1
ρl

(γσlE0 − µl + rd + χ(τ)(1/β − 1 − rd) (D.43)

<r
B
l +

1
ρl
χ(τ)(1/β − 1 − rd) (D.44)

Which holds true by assumption.

6.3. Assume a realized return rl,1 in the range (rlB, rl]. Then:

L
∗
1 <L

∗B
1 (D.45)

0 <
µl + ρlrl,1 − rd

γσ2l
(D.46)

r
B
l −

γσ
2
l E0

ρl
<rl,1 (D.47)

Which holds true by assumptions.

6.4. Assume a realized rl,1 in the range (max{rl, rBl }, min{rl, rBl }]. Then:

L
∗
1 <L

∗B
1 (D.48)

µl + ρlrl,1 − rd − χ(τ)(1/β − 1 − rd)
γσ2l

<
µl + ρlrl,1 − rd

γσ2l
(D.49)

−χ(τ)(1/β − 1 − rd) <0 (D.50)

Which holds true by parameter assumption.

6.5. Assume a realized rl,1 in the range (rl, rBl ). Then:

L
∗
1 <L

∗B
1 (D.51)

E0

χ(τ) <
µl + ρlrl,1 − rd

γσ2l
(D.52)

rl −
1
ρl
χ(τ)(1/β − 1 − rd) <rl,1 (D.53)

Which holds true by assumption.

6.6. Assume a realized rl,1 in the range (rBl , rl). Then:

L
∗
1 <L

∗B
1 (D.54)

µl + ρlrl,1 − rd − χ(τ)(1/β − 1 − rd)
γσ2l

<
E1

χ(τ) (D.55)
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rl,1 <rl (D.56)

This holds true by assumption.

6.7. Finally, assume a realized return state rl,1 ∈ [max{rl, rBl }, +∞. Then:

L
∗
1 = L

∗B
1 (D.57)

E1

χ(τ ) =
E1

χ(τ) (D.58)

D.3. Proof for CCyB

Proof omitted due to its triviality. Please see the main-text for results.

D.4. Proof for a Dividend Prudential Target

The steady state of our model is characterized by the unconditional mean µl and implies a

dividend of:

d
SS
1 =E

SS
1 + µ̄

E
SS
1

χ(τ) − rd
⎛
⎜
⎝
E
SS
1

χ(τ) − E
SS
1

⎞
⎟
⎠
− E

SS
1 (D.59)

=µ̄
E
SS
1

χ(τ) − rd
⎛
⎜
⎝
E
SS
1

χ(τ) − E
SS
1

⎞
⎟
⎠

(D.60)

= [ µ̄ − rd
χ(τ) + rd]

χ(τ)
γσ2l

[µ̄ − rd − χ(τ) (
1

β
− 1 − rd)] . (D.61)

Given this, a state-dependent dividend prudential target is introduced:

d
T
1 =

rl,1
µl
d
SS
1 (D.62)

Any deviations from the target are punished with the following fine:

κ

2
(d1 − dT1 )

2
(D.63)

κ

2
(E0 − E1 −

rl,1
µl
d
SS
1 )

2

(D.64)

This results in the following revised optimization problem:

U(E0 − E1, d2) = max
L1,E1

E0 − E1 −
κ

2
(E0 − E1 −

rl,1
µl
d
SS
1 )

2
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+βE1(1 + rd) + β [L1(µl + ρlrl,1) − L1rd −
γσ

2
l

2
L
2
1] (D.65)

s.t.

λ1 ∶ L1 ∈ [E1,
E1

χ(τ)] (D.66)

λ2 ∶ E1 ∈ [0, E0] (D.67)

1. We start by ignoring the feasibility constraints on L1 and derive the optimal equity.

1.1. The FOC with respect to equity yields the following optimal equity levels:

∂U(d1, d2)
∂E1

= − 1 −
κ

2
(−2E0 + 2

rl,1
µl
d
SS
1 + 2E1) + β(1 + rd) = (D.68)

E1 =
1
κ (β(1 + rd) − 1) + E0 −

rl,1
µl
d
SS
1 (D.69)

1.2. The equity in equation (D.69) is the unconstrained equity level and decreases in

rl,1. Hence, we know that for low rl,1 below a threshold r
∗
l , the upper feasibility limit binds:

E1 ≥E0 (D.70)

rl,1 ≤ r
∗
l =

µl

dSS1

1
κ(β(1 + rd) − 1). (D.71)

1.3. Similarly, the equity level is constrained below at zero:

E1 ≤ 0 (D.72)

rl,1 ≥= r
∗∗
l =

µl

dSS1
[1
κ(β(1 + rd) − 1) + E0] . (D.73)

2. The above derived thresholds on equity ignore that the equity choice may relax

feasbility constraints on lending. They are nevertheless necessary for a complete proof.

3. Next, assume that a feasible E1 has been chosen and thus the bank is left with the

optimal lending choice. Here, we can rely on results from the bank section and now for a

given level E1, the bank chooses:

L1 =E1 ∀rl,1 ≤ r
l
l =

1
ρl

[γσ2l E1 + rd − µl] (D.74)

4. Notice that, unlike equity, lending increases in rl,1. Hence, for low return states bank

would lend out less than feasible and vice versa. Unconstrained, optimal lending is:

L
∗
1 =

µl + ρlrl,1 − rd

γσ2
l

. (D.75)

5. Let us start with the upper feasibility limit. When is lending larger than optimal

E1/χ(τ).
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5.1. First, we assume that L1 is already constrained below r
∗∗
l :

L1 ≥
E
∗
1

χ(τ) , (D.76)

rl,1 ≥r
h
l =

µ̄χ(τ)
χ(τ)ρlµ̄ + γσ2

l d
SS
1

[ γσ
2
l

χ(τ) (1
κ (β(1 + rd) − 1) + E0) + rd − µl] . (D.77)

5.2. Next, we verify that indeed r
<

hrl∗∗:

r
h
l ≤ r

∗∗
l (D.78)

µ̄χ(τ)
χ(τ)ρlµ̄ + γσ2

l d
SS
1

[ γσ
2
l

χ(τ) (1
κ (β(1 + rd) − 1) + E0) + rd − µl] <

µl

dSS1
[1
κ(β(1 + rd) − 1) + E0]

(D.79)

0 <
χ(τ)ρlµl
dSS1

[1
κ(β(1 + rd) − 1) + E0 +

µl − rd
χ(τ) ] . (D.80)

5.3. we can then conclude that for all levels above r
h
l retaining more equity relaxes the

upper feasibility constraint on lending.

6. Taking this into account, we define an alternative optimization problem for high

return states above r
h
l , where L1 = E1/chi,

6.1. Next, we derive the revised FOC wrt. E1 that assumes L1 = E1/χ(τ):

−1 −
κ

2
(−2E0 + 2

rl,1
µl
d
SS
1 + 2E1) + β(1 + rd) + β

µl + ρlrl,1 − rd
χ(τ) − β

γσ
2
l

χ(τ)2E1 = 0, (D.81)

κE1 + β
γσ

2
l

χ(τ)2E1 = −1 + κE0 − κ
rl,1
µ̄ d

SS
1 + β(1 + rd) + β

µl + ρlrl,1 − rd
χ(τ) , (D.82)

E1 =
χ(τ)2

χ(τ)2κ + βγσ2l
[−1 + κE0 − κ

rl,1
µ̄ d

SS
1 + β(1 + rd) + β

µl + ρlrl,1 − rd
χ(τ) ] (D.83)

The optimal equity level E1 above r
h
l is strictly decreasing in rl,1. Eventually, as rl,1

increases it will meet the lower feasibility limit on E1 of zero once again. The threshold

return state r
hh
l is:

0 =
χ(τ)2

χ(τ)2κ + βγσ2
l

[−1 + κE0 − κ
rl,1
µ̄ d

SS
1 + β(1 + rd) + β

µl + ρlrl,1 − rd
χ(τ) ] ,

(D.84)

κ
rl,1
µ̄ d

SS
1 −

βρl
χ(τ)rl,1 = [−1 + κE0 + β(1 + rd) + β

µl − rd
χ(τ) ] , (D.85)

r
hh
l =

µ̄χ(τ)
κdSS1 χ(τ) − µlβρl

[−1 + κE0 + β(1 + rd) + β
µl − rd
χ(τ) ] . (D.86)
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7. Next, we turn to the lower feasibility limit on lending. Here we can distinguish two

cases: L1 intersects with E1 below and above r
∗
l . These two cases are determined by a

threshold on E0:

L
∗
1 ≤E1∗ (D.87)

µl + ρlrl,1 − rd

γσ2
l

≤
1
κ (β(1 + rd) − 1) + E0 −

rl,1
µl
d
SS
1 , (D.88)

rl,1 ≤r
l
l =

µl

ρlµl + γσ
2
l d

SS
1

[γσ
2
l

κ (β(1 + rd) − 1) + γσ2
l E0 + rd − µl] , (D.89)

r
l
l ≤r

∗
l , (D.90)

E0 ≥
ρlµl

γσ2
l d

SS
1

1
κ(β(1 + rd) − 1) + µl − rd

γσ2
l

= E0. (D.91)

8. We first study the case, where r
l
l ≥ r

∗
l as E0 ≥ E0. Here, any reduction in equity

allows the bank to relax the lower feasibility limit.

8.1. Accounting for E1 = L1 in the optimization problem, we obtain the following FOC

fir equity:

−1 −
κ

2
(−2E0 + 2

rl,1
µl
d
SS
1 + 2E1) + β(1 + rd) + β(µl + ρlrl,1 − rd) − βγσ2l E1 = 0 (D.92)

κE1 + βγσ
2
l E1 = −1 + κE0 − κ

rl,1
µ̄ d

SS
1 + β(1 + µl + ρlrl,1) (D.93)

E1 =
1

κ + βγσ2l
[−1 + κE0 − κ

rl,1
µ̄ d

SS
1 + β(1 + µl + ρlrl,1)] (D.94)

8.2. Mirroring this, for low rl,1, the upper feasibility limit of E1 not exceeding E0 applies:

E0 ≥
1

κ + βγσ2
l

[−1 + κE0 − κ
rl,1
µ̄ d

SS
1 + β(1 + µl + ρlrl,1)]

(D.95)

rl,1 ≤= r
ll
l,1 =

µl

βρlµl − κd
SS
1

[βγσ2
l E0 + 1 − β(1 + µl)] (D.96)

9. Next, we study the case where E0 ≤ E0 and thus, r
l
l ≤ r

∗
l . Here, again the bank

could relax the feasbility limit on L1 by retaining more in equity states below r
l
l. That this

is not optimal can easily be shown by the fact that:

r
l
l ≤r

ll
l (D.97)

µl

ρlµl + γσ
2
l d

SS
1

[γσ
2
l

κ (β(1 + rd) − 1) + γσ2
l E0 + rd − µl] ≤

µl

βρlµl − κd
SS
1

[βγσ2
l E0 + 1 − β(1 + µl)]

(D.98)
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E0 ≤
ρlµl

γσ2
l d

SS
1

1
κ(β(1 + rd) − 1) + µl − rd

γσ2
l

= E0

(D.99)

Because the above inequality (D.99) holds by assumption, we have that the bank never

finds it optimal to pay out more equity to reduce lending.

10. For a given κ, assume that:

10.1.

E0 ≥ E0 (D.100)

Then, whenever we are in a very low return state rl,1 ≤ r
ll
l , we have:

r
ll
l =

µl

βρlµl − κd
SS
1

[βγσ2
l E0 + 1 − β(1 + µl)] (D.101)

E1 =E0 = L1 (D.102)

For low return states, where rl,1 ∈ (rlll , rll], whe have:

r
l
l =

µl

ρlµ̄ + γσ
2
l d

SS
1

[γσ2
l (

1
κ (β(1 + rd) − 1) + E0) + rd − µl] (D.103)

E1 =
1

κ + βγσ2
l

[−1 + κE0 − κ
rl,1
µ̄ d

SS
1 + β(1 + µl + ρlrl,1)] (D.104)

L1 =E1 (D.105)

For intermediate return states rl,1 ∈ (rll, rhl ], we have that :

r
h
l =

µ̄χ(τ)
χ(τ)ρlµ̄ + γσ2

l d
SS
1

[ γσ
2
l

χ(τ) (1
κ (β(1 + rd) − 1) + E0) + rd − µl] (D.106)

E1 =
1
κ (β(1 + rd) − 1) + E0 −

rl,1
µl
d
SS
1 (D.107)

L1 =
µl + ρlrl,1 − rd

γσ2
l

(D.108)

For high return states, where rl,1 ∈ (rhl , rhhl ], we have that:

r
hh
l =

µ̄χ(τ)
κdSS1 χ(τ) − µlβρl

[−1 + κE0 + β(1 + rd) + β
µl − rd
χ(τ) ] (D.109)

E1 =
χ(τ)2

χ(τ)2κ + βγσ2
l

[−1 + κE0 − κ
rl,1
µ̄ d

SS
1 + β(1 + rd) + β

µl + ρlrl,1 − rd
χ(τ) ] (D.110)

L1 =
E1

χ(τ) (D.111)

And finally, for very high return states, where rl,1 > r
hh
l , we have:
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r
hh
l =

µ̄χ(τ)
κdSS1 χ(τ) − µlβρl

[−1 + κE0 + β(1 + rd) + β
µl − rd
χ(τ) ] (D.112)

E1 =L1 = 0 (D.113)

10.2. If we have E0 ≤ E0, then the bank no longer retains less equity in low return

states.

For very low return states rl,1 ≤ r
l
l, the optimal lending is thus:

r
l
l =

γσ
2
l E0 − µl + rd

ρl
(D.114)

L1 =E0. (D.115)

For intermediate return states, rl,1 ∈ [rll, rhl ], the lending choice is unrestricted and:

L1 =
µl + ρlrl,1 − rd

γσ2
l

. (D.116)

Similar to case 10.2, for high return states, where rl,1 ∈ (rhl , rhhl ], we have that:

r
hh
l =

µ̄χ(τ)
κdSS1 χ(τ) − µlβρl

[−1 + κE0 + β(1 + rd) + β
µl − rd
χ(τ) ] (D.117)

E1 =
χ(τ)2

χ(τ)2κ + βγσ2
l

[−1 + κE0 − κ
rl,1
µ̄ d

SS
1 + β(1 + rd) + β

µl + ρlrl,1 − rd
χ(τ) ] (D.118)

L1 =
E1

χ(τ) (D.119)

And again, for very high return states, where rl,1 > r
hh
l , we have:

r
hh
l =

µ̄χ(τ)
κdSS1 χ(τ) − µlβρl

[−1 + κE0 + β(1 + rd) + β
µl − rd
χ(τ) ] (D.120)

E1 =L1 = 0, (D.121)

D.5. Alternative Welfare Function

As a sensitivity analysis we investigate how a supervisor would optimally set the severity

of the stress test if he also takes into account the welfare of the bank’s shareholders. To

capture this trade-off, we assign the welfare weight φ ≥ 0 to the expected utility of the bank’s

shareholder. We, furthermore, assume that both the supervisor and the bank shareholder

assign the same welfare weight γ to the expected variance of loans and dividends, respectively.

Then, observing E0 and rl,0, the supervisor solves:

max
τ

E[L∗1 ∣ rl,0, E0] −
γ

2
VAR0[L∗1 ∣ rl,0, E0]
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+ φ (E[d∗1 ∣ rl,0, E0] + βE[d∗2 ∣ rl,0, E0]) (D.122)

− φ
γ

2
(VAR[d∗1 ∣ rl,0, E0] + βVAR[d∗2 ∣ rl,0, E0])

s.t.

χ(τ) ∈ [χ, 1) (D.123)

where

rl,1 ≤ rl ∶ L
∗
1 = 0 (D.124)

rl,1 ∈ (rl, rl) ∶ L
∗
1 =

µl + ρlrl,1 − rd − χ(τ)(1/β − 1 − rd)
γσ2

l

(D.125)

rl,1 ≥ rl ∶ L
∗
1 =

E0

χ(τ) (D.126)

As is the case for optimal loan levels L
∗
1 , the supervisor anticipates a rectified normally

distributed d
∗
1 and d

∗
2 with lower and upper bounds. In period t = 1, dividends are set to

d
∗
1 = E0 for return states below rl1 (no retainment); dividends are set to d

∗
1 = 0 for return

states above rl,1 (full retainment; between rl1 and rl,1 dividends are normally distributed

with N(µd1 , σ
2
d1):

d
x
1 =E0 −

χ(τ)
γσ2l

(µl + ρlrl,1 − rd − χ(τ)(
1

β
− 1 − rd)) (D.127)

d
x
1 ∼N(µd1 , σ

2
d,1) (D.128)

σ
2
d,1 =(χ(τ)γσl

ρl)
2

(D.129)

The optimal bank dividends d
∗
1 thus take the following step-function.

d
∗
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E0 d
x
1 > E0

d
x
1 0 ≥ d

x
1 ≥ E0

0 d
x
1 < 0

(D.130)

Consequently, in period t = 2, dividends are equal to d
∗
2 = E0 ( rl,2−rdχ(τ) + 1 + rd) if rl,1 >

rl,1 with variance (1+ρ2l )( E0

χ(τ)σl)
2
; if rl,1 ∈ (rl,1, rl,1) dividends are normally distributed with

N(µd2 , σ
2
d2):

d
x
2 =E

∗
1 (

rl,2 − rd
χ(τ) + 1 + rd) (D.131)

=
1

γσ2l
(µl + ρlrl,1 − rd − χ(τ)(

1

β
− 1 − rd)) (rl,2 − rd + χ(τ)(1 + rd)) (D.132)

d
x
2 ∼N(µd2 , σ

2
d,2) (D.133)

µd,2 =
1

γσ2l
(µl(1 + ρl) + ρ2l rl,0 − rd − χ(τ)(

1

β
− 1 − rd)) (D.134)
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⋅ (1 + ρl)µl + ρ2l rl,0 − rd + χ(τ)(1 + rd)) (D.135)

σ
2
d,2 =E[d∗2

2] − E[d∗2 ]2 = ( ρl
γσl

)
2

b
2
+ (1 + ρ2l )σ2l a2 +

ρ
4
l

γ2
+ 4ab

ρ
2
l

γ (D.136)

where

a =
1

γσ2l
(µl(1 + ρl) + ρ2l rl,0 − rd − χ(τ)(

1

β
− 1 − rd)) (D.137)

b = ((1 + ρl)µl + ρ2l r0 − rd + χ (τ) (1 + rd)) (D.138)

Conditional on rl,1 ∈ (rl,1, rl,1), the optimal bank dividends d
∗
2 thus take the following step-

function.

d
∗
2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
x
2 d

x
2 ≥ E0 ( rl,2−rdχ(τ) + 1 + rd)

E0 ( rl,2−rdχ(τ) + 1 + rd) d
x
2 < E0 ( rl,2−rdχ(τ) + 1 + rd)

(D.139)

Appendix E. Additional Figures

Figure E.1: Optimal Punishment Factor κ
∗

under a Dividend Prudential Target

ω = 0
ω = 1

ω = γ

2

ω = γ
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Figure E.2: Capital Buffers under Optimal Stress Tests + Macroprudential Policies

χ(τ∗) under an optimal Stress Test Framework
χ(τ∗) under an optimal CCyB
χ(τ∗) under an optimal Dividend ban
χ(τ∗) under an optimal DPT
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Figure E.3: Expected Lending under Optimal Stress Tests + Macroprudential Policies

E[L∗1 ∣ rl,0, E0] under an optimal Stress Test Framework
E[L∗1 ∣ rl,0, E0] under an optimal CCyB
E[L∗1 ∣ rl,0, E0] under an optimal Dividend ban
E[L∗1 ∣ rl,0, E0] under an optimal DPT
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Figure E.4: Expected Variance of Lending under Optimal Stress Tests + Macroprudential
Policies

VAR[L∗1 ∣ rl,0, E0] under an optimal Stress Test Framework
VAR[L∗1 ∣ rl,0, E0] under an optimal CCyB
VAR[L∗1 ∣ rl,0, E0] under an optimal Dividend ban
VAR[L∗1 ∣ rl,0, E0] under an optimal DPT

68


	Introduction
	Theoretical Analysis
	Three-period Model
	The Bank's Optimal Choices
	The Effect of Stress Tests

	Calibration & Optimal Stress-test Tightness 
	Model Calibration
	Effect of Stress Tests on Equity and Lending
	The Supervisory Choice of 

	Sensitivity Analysis
	Voluntary Stress-test Violation
	Alternative Supervisor Welfare Function

	Stress Tests in the Wider Regulatory Environment
	Covid-19 Dividend Restrictions
	Counter-Cyclical Capital Buffer
	Dividend Prudential Target
	Policy Comparison

	Conclusion
	Regulatory Framework
	Proofs for Section 2
	Solving the Bank's Optimization Problem
	Comparative Statics Over 

	The Optimal Tightness 
	Additional Proofs
	Proofs for Voluntary Violation
	Covid-19 Dividend Ban
	Proof for CCyB
	Proof for a Dividend Prudential Target
	Alternative Welfare Function

	Additional Figures

